SparkStreaming 性能、稳定、容错与语义

你。 提交于 2019-12-06 02:58:22
 
怎样提高Spark Streaming的性能
1、创建多个接收器
        待定::
2、调节每一个batch interval的数据块的数量,其实就是调整上面第二个问题中提到的配置spark.streaming.blockInterva
        待定::
3、调整Recevier每秒接收数据的速率
        待定::
4、通过repartition这个API来增加并行度
        待定::
5、使用Kryo序列化机制
        待定::
6、使用CMS垃圾收集器
        待定::

Spark Streaming的稳定性:
BackPressure
        待定::
Elastic Scaling
        待定::
Spark Streaming是怎样容错的
1、Executor失败容错:Executor的失败会重新启动一个新的Executor,这个是Spark自身的特性。如果Receiver所在的Executor失败了,那么Spark Streaming会在另外一个Executor上启动这个Receiver(这个Executor上可能存在已经接收到的数据的备份)
2、Driver失败的容错:如果Driver失败的话,那么整个Spark Streaming应用将会全部挂掉。所以Driver端的容错是非常重要的,我们首先可以配置Driver端的checkpoint,用于定期的保存Driver端的状态;然后我们可以配置Driver端失败的自动重启机制(每一种集群管理的配置都不一样);最后我们需要打开Executor端的WAL机制
3、一个Task失败的容错:Spark中的某个Task失败了可以重新运行,这个Task所在的Stage失败的话呢,也可以根据RDD的依赖重新跑这个Stage的父亲Stage,进而重新跑这个失败的Stage
4、在实时计算的过程,肯定不能容忍某个Task的运行时间过长,Spark Streaming对于某个运行时间过长的Task会将这个Task杀掉重新在另一个资源比较充足的Executor上执行。这个就是利用了Spark的Task调度的推测机制。
 
 
Spark Streaming程序怎么做到不丢数据
答:因为Spark Streaming在接收数据的时候有两种模式,第一种是基于Receiver模式,第二种是Kafka Direct模式,两者不丢数据的处理方式不一样,所以我们需要了解掌握这两种模式不丢数据的处理策略:
基于Receiver模式:
在这种模式下,我们可以使用checkpoint + WAL + ReliableReceiver的方式保证不丢失数据,就是说在driver端打开chechpoint,用于定期的保存driver端的状态信息到HDFS上,保证driver端的状态信息不会丢失;在接收数据Receiver所在的Executor上打开WAL,使得接收到的数据保存在HDFS中,保证接收到的数据不会丢失;因为我们使用的是ReliableReceiver,所以在Receiver挂掉的期间,是不会接收数据,当这个Receiver重启的时候,会从上次消费的地方开始消费。
所以我们可以总结Spark Streaming的checkpoint机制包括driver端元数据的checkpoint以及Executor端的数据的checkpoint(WAL以及updateStateByKey等也需要checkpint),Executor端的checkpoint机制除了保证数据写到HDFS之外,还有切断很长的RDD依赖的功效
Driver端checkpoint
            待定::
Executor端checkpoint
            待定::
 
Kafka Direct模式:
这种模式下,因为数据源都是存储在Kafka中的,所以一般不会丢数据,但是有一种情况下可能会丢失数据,就是当Spark Streaming应用失败后或者升级重启的时候因为没有记住重启之前消费的topic的offset,使得重启后Spark Streaming从topic的最新的offset开始消费(这个是默认的行为),这样就导致Spark Streaming消费不到失败或者重启过程中Kafka接收到的消息,解决这个问题的办法有三个:
1、使用Spark Streaming自带的Driver端checkpoint机制,因为Driver端checkpoint机制会定期的保存Driver端的状态信息,当然也包括当前批次消费的Kafka中topic的offset信息啦,这样下次重启的时候就可以从checkpoint文件中直接读取上次消费到的offset信息,然后从这个offset开始消费。但是Driver端的checkpoint机制有一个很明显的缺陷,因为Driver端的checkpoint机制保存的Driver端的状态信息还包含DStreamGraph的状态信息,说白了就是将Driver端的代码序列化到checkpoint文件中,这样的话,如果我们对代码做了很大的改动或者升级的话,那么升级后的代码和checkpoint文件中的代码不兼容,这样的话会导致重启失败,解决这个问题的方法就是每次升级的时候将checkpoint文件清除掉,但是这样做的话也清除了保存在checkpoint文件中上次消费到的offset信息,这个不是我们想要的,所以这种方式不可取
2、我们可以在每一个批次开始之前将我们消费到的offset手动的保存到其他第三方存储系统中,可以是zookeeper或者Hbase,如下:

这样就是实现了手动的保存我们每一个批次消费到的topic的offset信息
 
3、也可以直接调用Kafka中高级的API,将消费的offset信息保存到zookeeper中

当重启Spark Streaming应用的时候,Spark Streaming会自动的从zookeeper中拿到上次消费的offset信息
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!