I'm currently trying to neatly cut data with use of the Hmisc
package, as in the example below:
dummy <- data.frame(important_variable=seq(1:1000))
require(Hmisc)
dummy$cuts <- cut2(dummy$important_variable, g = 4)
The produced cuts are correct with respect to the values:
important_variable cuts
1 1 [ 1, 251)
2 2 [ 1, 251)
3 3 [ 1, 251)
4 4 [ 1, 251)
5 5 [ 1, 251)
6 6 [ 1, 251)
> table(dummy$cuts)
[ 1, 251) [251, 501) [501, 751) [751,1000]
250 250 250 250
However, I would like for the data to be presented slightly differently. For instance instead of
[ 1, 251 )
[ 251, 501 )
I would prefer the notation
1 - 250
251 - 500
As I'm doing a lot of that on multiple variables I'm interested in a reproducible solution that would be easy to apply across multiple variables.
Edit
Following the discussion in comments, the solution would have to work on more messy variables, like x2 <- runif(100, 5.0, 7.5)
.
We could use gsubfn
to remove the parentheses as well as change the numeric part by subtracting one from the second set of numbers
library(gsubfn)
v1 <- dummy$cuts
v1New <- gsubfn('\\[\\s*(\\d+),\\s*(\\d+)[^0-9]+', ~paste0(x, '-',
as.numeric(y)-1), as.character(v1))
table(v1New)
# 1-250 251-500 501-750 751-999
# 250 250 250 250
For the second case involving decimals, we need to match the numbers along with decimals and capture those groups by placing them in parentheses (([0-9.]+)
, (\\d+\\.\\d+)
). We change the second set of capture group by converting to 'numeric' and subtracting 0.01 from it (as.numeric(y)-0.01
). The \\s*
denotes 0 or more spaces. The spaces was uneven in the format, so we had to use that instead of \\s+
which is 1 or more spaces.
v2New <- gsubfn('\\[\\s*([0-9.]+),(\\d+\\.\\d+).*', ~paste0(x,
'-',as.numeric(y)-0.01), as.character(v2))
table(v2New)
v2New
#5.00-5.59 5.60-6.12 6.13-6.71 6.72-7.49
# 25 25 25 25
data
set.seed(24)
x2 <- runif(100, 5.0, 7.5)
v2 <- cut2(x2, g=4)
This provides a generic solution for integer and decimal ranges (without needing to specify the increment by hand):
library(stringr)
pretty_cuts <- function(cut_str) {
# so we know when to not do something
first_val <- as.numeric(str_extract_all(cut_str[1], "[[:digit:]\\.]+")[[1]][1])
last_val <- as.numeric(str_extract_all(cut_str[length(cut_str)], "[[:digit:]\\.]+")[[1]][2])
sapply(seq_along(cut_str), function(i) {
# get cut range
x <- str_extract_all(cut_str[i], "[[:digit:]\\.]+")[[1]]
# see if a double vs an int & get # of places if decimal so
# we know how much to inc/dec
inc_dec <- 1
if (str_detect(x[1], "\\.")) {
x <- as.numeric(x)
inc_dec <- 10^(-match(TRUE, round(x[1], 1:20) == x[1]))
} else {
x <- as.numeric(x)
}
# if not the edge cases inc & dec
if (x[1] != first_val) { x[1] <- x[1] + inc_dec }
if (x[2] != last_val) { x[2] <- x[2] - inc_dec }
sprintf("%s - %s", as.character(x[1]), as.character(x[2]))
})
}
dummy <- data.frame(important_variable=seq(1:1000))
dummy$cuts <- cut2(dummy$important_variable, g = 4)
a <- pretty_cuts(dummy$cuts)
unique(dummy$cuts)
## [1] [ 1, 251) [251, 501) [501, 751) [751,1000]
## Levels: [ 1, 251) [251, 501) [501, 751) [751,1000]
unique(a)
## [1] "1 - 250" "252 - 500" "502 - 750" "752 - 1000"
x2 <- runif(100, 5.0, 7.5)
b <- pretty_cuts(cut2(x2, g=4))
unique(cut2(x2, g=4))
## [1] [5.54,6.28) [6.28,6.97) [6.97,7.50] [5.02,5.54)
## Levels: [5.02,5.54) [5.54,6.28) [6.28,6.97) [6.97,7.50]
unique(b)
## [1] "5.54 - 6.27" "6.29 - 6.97" "6.98 - 7.49" "5.03 - 5.53"
来源:https://stackoverflow.com/questions/31771810/obtaining-nice-cuts-in-hmisc-with-cut2-without-the-signs