I have an application - more like a utility - that sits in a corner and updates two different databases periodically.
It is a little standalone app that has been built with a Spring Application Context. The context has two Hibernate Session Factories configured in it, in turn using Commons DBCP data sources configured in Spring.
Currently there is no transaction management, but I would like to add some. The update to one database depends on a successful update to the other.
The app does not sit in a Java EE container - it is bootstrapped by a static launcher class called from a shell script. The launcher class instantiates the Application Context and then invokes a method on one of its beans.
What is the 'best' way to put transactionality around the database updates?
I will leave the definition of 'best' to you, but I think it should be some function of 'easy to set up', 'easy to configure', 'inexpensive', and 'easy to package and redistribute'. Naturally FOSS would be good.
The best way to distribute transactions over more than one database is: Don't.
Some people will point you to XA but XA (or Two Phase Commit) is a lie (or marketese).
Imagine: After the first phase have told the XA manager that it can send the final commit, the network connection to one of the databases fails. Now what? Timeout? That would leave the other database corrupt. Rollback? Two problems: You can't roll back a commit and how do you know what happened to the second database? Maybe the network connection failed after it successfully committed the data and only the "success" message was lost?
The best way is to copy the data in a single place. Use a scheme which allows you to abort the copy and continue it at any time (for example, ignore data which you already have or order the select by ID and request only records > MAX(ID) of your copy). Protect this with a transaction. This is not a problem since you're only reading data from the source, so when the transaction fails for any reason, you can ignore the source database. Therefore, this is a plain old single source transaction.
After you have copied the data, process it locally.
Setup a transaction manager in your context. Spring docs have examples, and it is very simple. Then when you want to execute a transaction:
try {
TransactionTemplate tt = new TransactionTemplate(txManager);
tt.execute(new TransactionCallbackWithoutResult(){
protected void doInTransactionWithoutResult(
TransactionStatus status) {
updateDb1();
updateDb2();
}
} catch (TransactionException ex) {
// handle
}
For more examples, and information perhaps look at this: XA transactions using Spring
When you say "two different databases", do you mean different database servers, or two different schemas within the same DB server?
If the former, then if you want full transactionality, then you need the XA transaction API, which provides full two-phase commit. But more importantly, you also need a transaction coordinator/monitor which manages transaction propagation between the different database systems. This is part of JavaEE spec, and a pretty rarefied part of it at that. The TX coordinator itself is a complex piece of software. Your application software (via Spring, if you so wish) talks to the coordinator.
If, however, you just mean two databases within the same DB server, then vanilla JDBC transactions should work just fine, just perform your operations against both databases within a single transaction.
In this case you would need a Transaction Monitor (server supporting XA protocol) and make sure your databases supports XA also. Most (all?) J2EE servers comes with Transaction Monitor built in. If your code is running not in J2EE server then there are bunch of standalone alternatives - Atomicos, Bitronix, etc.
You could try Spring ChainedTransactionManager - http://docs.spring.io/spring-data/commons/docs/1.6.2.RELEASE/api/org/springframework/data/transaction/ChainedTransactionManager.html that supports distributed db transaction. This could be a better alternative to XA
来源:https://stackoverflow.com/questions/128377/what-is-the-best-way-to-do-distributed-transactions-across-multiple-databases