Generate white noise in Modelica (SystemModeler)

老子叫甜甜 提交于 2019-12-04 04:36:08

An alternative is to use Modelica.Blocks.Noise to avoid writing external code yourself (added in Modelica Standard Library 3.2.2 released April 3, 2016; i.e. it would not have helped when the original question was asked).

One benefit of Modelica.Blocks.Noise is that the tricky questions with sampling, multiple seeds, etc are solved.

Mikael Forsgren

You can add white noise in Wolfram SystemModeler via external C-code.

Modelica code (I've removed the diagram annotations from the code, so that it might be easier to read):

package WhiteNoise "Package for generating white noise"
  extends Modelica.Icons.Library;

  block NoiseNormal "Normally distributed random noise"
    parameter Real mean=0 "Mean value of random noise";
    parameter Real stdev=1 "Standard deviation of random noise";
    parameter Real tSample=0.01 "Noise sample time";
    Modelica.Blocks.Interfaces.RealOutput y;
  equation 
    when initial() then
      WhiteNoise.initRandomNormal();
    end when;
    when sample(0, tSample) then
      y=mean + stdev*WhiteNoise.RandomNormal(time);
    end when;
  end NoiseNormal;

  function initRandomNormal
    external "C" ext_initRandomNormal()   annotation(Include="#include \"ext_initRandNormal.c\"");
  end initRandomNormal;

  function RandomNormal
    output Real y;
    input Real u;
    external "C" y=ext_RandomNormal(u)   annotation(Include="#include \"ext_RandNormal.c\"");
  end RandomNormal;

end WhiteNoise;

External code:

ext_intRandNormal.c

#include <math.h>
#include <limits.h>

void ext_initRandomNormal()
{
    srand(time(NULL));
}

ext_RandNormal.c

#include <math.h>
#include <limits.h>
double ext_RandomNormal(double timein)

{
    unsigned int seed = 0;
    double v1, v2, r;

    timein /= 100;
    seed = (timein - floor(timein)) * UINT_MAX;

    do
    {
        v1 = 2 * ((double) rand()) /((double) RAND_MAX) - 1;
        v2 = 2 * ((double) rand()) /((double) RAND_MAX) - 1;
        r = v1 * v1 + v2 * v2;
    } while((r >= 1.0) || (r == 0.0));

    return v1 * sqrt( - 2.0 * log(r) / r );
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!