HDU 2899 Strange fuction (模拟退火)

巧了我就是萌 提交于 2019-12-03 02:44:38

题目链接:HDU 2899

Problem Description

Now, here is a fuction:

F(x) = 6 * x^7+8x^6+7x^3+5x^2-yx (0 <= x <=100)

Can you find the minimum value when x is between 0 and 100.

Input

The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has only one real numbers Y.(0 < Y <1e10)

Output

Just the minimum value (accurate up to 4 decimal places),when x is between 0 and 100.

Sample Input

2
100
200

Sample Output

-74.4291
-178.8534

Solution

题意

给定 \(y\),求函数 \(F(x) = 6x^7 + 8x^6 + 7x^3 + 5x^2 - yx\) 的最小值,其中 \(x\) 的范围是 \([0, 100]\)

思路

模拟退火

模拟退火算法是一种随机化算法,在数学建模中比较常见,在 ACM 中不太常用。主要用于求解函数 (不是单峰函数的时候) 的最值,在最小圆/球覆盖中也有应用。

模拟退火算法基于物理退火的原理,将固体加热至高温然后冷却,温度越高降温的概率越大 (降温更快),温度越低降温的概率越小 (降温越慢)。模拟退火算法进行多次降温,直到找到一个可行解。

简单来说,如果新的状态比当前状态更优就接受该状态,否则以一定概率接受新状态。概率为:\(P(\Delta E) = e^{\frac{-\Delta E}{T}}\),其中 \(T\) 为当前温度,\(\Delta E\) 新状态与当前状态的能量差。

模拟退火主要有三个参数:初始温度 \(T_0\),降温系数 \(d\),终止温度 \(T_k\)

让当前温度 \(T = T_0\),温度下降,尝试转移,如果转移 \(T = d * T\)。当 \(T < T_k\) 时结束模拟退火算法。

伪代码如下:

T0 = 100000;  // 初始温度为高温,设置成一个大数
Tk = 1e-8;  // 终止温度为低温,设置为一个接近于0的数
d = 0.98;  // d是一个小于1但是非常接近于1的数
f(x);  // 评价函数,比如物理意义上的温度
T = T0;  // 当前温度
now, nxt;  // 当前状态与新状态
while(T > Tk) {
    dE = f(now) - f(nxt);  // 能量差
    if(dE >= 0) {  // 新状态更优就接受
        now = nxt;
    } else if(exp(-dE/T) > rand()) {  // 否则以一定概率接受
        now = nxt;
    }
    T *= d;  // 降温
}

模拟退火算法的缺点主要是精度不高,求得的是近似最优解而不是最优解。

Code

#include <bits/stdc++.h>
using namespace std;
typedef double db;
const db Tk = 1e-8;
const db T0 = 100000;
const db d = 0.98;

// 评估函数
db func(db x, db y) {
    return 6 * pow(x, 7.0) + 8 * pow(x, 6.0) + 7 * pow(x, 3.0) + 5 * pow(x, 2.0) - y * x;
}

// 模拟退火
db simulateAnneal(db y) {
    db T = T0;
    db x = 50.0;  // x的初始值
    db now = func(x, y);  // 当前状态
    db nxt;
    db ans = now;  // 最优解
    while(T > Tk) {
        int f[2] = {-1, 1};
        db newx = x + f[rand() % 2] * T;  // 按概率改变x,温度越低概率越小
        if(newx >= 0 && newx <= 100) {
            nxt = func(newx, y);  // 新状态
            ans = min(ans, nxt);  // 在退火过程中维护遇到的所有解的最优值
            db dE = now - nxt;  // 能量差
            if(dE >= 0) {
                now = nxt;
                x = newx;
            } else if(exp(dE / T) > rand()) {
                now = nxt;
                x = newx;
            }
        }
        T *= d;
    }
    return ans;
}

int main() {
    db y;
    int T;
    scanf("%d", &T);
    while(T--) {
        scanf("%lf", &y);
        printf("%.4lf\n", simulateAnneal(y));
    }
    return 0;
}

Reference

OI-Wiki 模拟退火

《算法竞赛 入门到进阶》罗勇军 郭卫斌 著

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!