传送门
这题的重点不在用求递推式,也不在求出递推式后的常系数齐次线性递推,而在下面这个结论:
对于一个矩阵,我们给出个二元组并定义一个函数。 那么数列存在递推式,且这个递推式就是其特征多项式。 可以按照特征多项式的性质证明一下。
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
static char buf[rlen],*ib,*ob;
(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
return ib==ob?-1:*ib++;
}
inline int read(){
int ans=0;
char ch=gc();
while(!isdigit(ch))ch=gc();
while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
return ans;
}
const int mod=998244353;
typedef long long ll;
typedef vector<int> poly;
inline int add(int a,int b){return(a+=b)<mod?a:a-mod;}
inline int dec(int a,int b){return(a-=b)<0?a+mod:a;}
inline int mul(int a,int b){return(ll)a*b%mod;}
inline void Add(int&a,int b){(a+=b)<mod?a:a-=mod;}
inline void Dec(int&a,int b){(a-=b)<0?a+=mod:a;}
inline void Mul(int&a,int b){a=(ll)a*b%mod;}
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,Mul(a,a))if(p&1)Mul(ret,a);return ret;}
int w[23],invv[23],lim,tim;
vector<int>rev[23];
inline void init_w(){
w[22]=ksm(3,(mod-1)>>23);
for(ri i=21;~i;--i)w[i]=mul(w[i+1],w[i+1]);
invv[0]=1;
for(ri iv=mod+1>>1,i=1;i<23;++i)invv[i]=mul(invv[i-1],iv);
}
inline void init(const int&up){
lim=1,tim=0;
while(lim<up)lim<<=1,++tim;
if(rev[tim].size())return;
rev[tim].resize(lim);
for(ri i=1;i<lim;++i)rev[tim][i]=(rev[tim][i>>1]>>1)|((i&1)<<(tim-1));
}
inline void ntt(poly&a,const int&type){
for(ri i=0;i<lim;++i)if(i<rev[tim][i])swap(a[i],a[rev[tim][i]]);
for(ri i=1,a0,a1,t=0;i<lim;i<<=1,++t)for(ri j=0,len=i<<1;j<lim;j+=len)
for(ri k=0,mt=1;k<i;++k,Mul(mt,w[t]))a0=a[j+k],a1=mul(a[j+k+i],mt),a[j+k]=add(a0,a1),a[j+k+i]=dec(a0,a1);
if(~type)return;
reverse(++a.begin(),a.end());
for(ri i=0;i<lim;++i)Mul(a[i],invv[tim]);
}
inline poly operator+(poly a,poly b){
int n=a.size(),m=b.size();
poly c(max(n,m));
for(ri i=0;i<n;++i)Add(c[i],a[i]);
for(ri i=0;i<m;++i)Add(c[i],b[i]);
return c;
}
inline poly operator-(poly a,poly b){
int n=a.size(),m=b.size();
poly c(max(n,m));
for(ri i=0;i<n;++i)Add(c[i],a[i]);
for(ri i=0;i<m;++i)Dec(c[i],b[i]);
return c;
}
inline poly operator*(poly a,poly b){
int n=a.size(),m=b.size(),t=n+m-1;
if(t<=128){
poly c(t);
for(ri i=0;i<n;++i)for(ri j=0;j<m;++j)Add(c[i+j],mul(a[i],b[j]));
return c;
}
init(t);
a.resize(lim),ntt(a,1);
b.resize(lim),ntt(b,1);
for(ri i=0;i<lim;++i)Mul(a[i],b[i]);
return ntt(a,-1),a.resize(t),a;
}
inline poly poly_inv(poly a,int k){
poly b(1,ksm(a[0],mod-2)),c;
for(ri i=4,up=k<<2;i<up;i<<=1){
c=a,c.resize(i>>1);
init(i);
b.resize(lim),ntt(b,1);
c.resize(lim),ntt(c,1);
for(ri j=0;j<lim;++j)Mul(b[j],dec(2,mul(b[j],c[j])));
ntt(b,-1),b.resize(i>>1);
}
return b.resize(k),b;
}
inline poly operator/(poly a,poly b){
int n=a.size(),m=b.size(),t=n-m+1;
reverse(a.begin(),a.end());
reverse(b.begin(),b.end()),b=poly_inv(b,t);
return a=a*b,a.resize(t),reverse(a.begin(),a.end()),a;
}
inline poly operator%(poly a,poly b){if(a.size()<b.size())return a;poly ret=a-a/b*b;return ret.resize(b.size()),ret;}
const int N=6050;
namespace Cayley_Hamilton{
int a[N],k;
poly md,f,g;
inline void init(poly coe,int*A,int k_){
k=k_;
for(ri i=0;i<k;++i)a[i]=A[i+1];
md.resize(k+1);
md[k]=1;
for(ri i=1;i<=k;++i)md[k-i]=coe[i]?mod-coe[i]:0;
}
inline poly query(int n){
f.resize(2,0),g.resize(1,0);
f[1]=g[0]=1;
for(;n;n>>=1,f=f*f%md)if(n&1)g=g*f%md;
return g;
}
}
int n,rt,K,f[N][N];
vector<int>e[N];
namespace Berlekamp_Massey{
int a[N],cnt,fail[N],det[N];
poly R[N];
inline void update(int n){
int t=a[n];
for(ri i=1,up=R[cnt].size();i<up;++i)Dec(t,mul(R[cnt][i],a[n-i]));
if(!t)return;
det[fail[cnt]=n]=t;
if(!cnt){R[++cnt].resize(n+1);return;}
Mul(t,ksm(det[fail[cnt-1]],mod-2));
R[cnt+1].resize(n-fail[cnt-1]),R[cnt+1].push_back(t);
t=mod-t;
for(ri i=1,up=R[cnt-1].size();i<up;++i)R[cnt+1].push_back(mul(t,R[cnt-1][i]));
R[cnt+1]=R[cnt+1]+R[cnt],++cnt;
}
inline void build(int n,int*A){
for(ri i=1;i<=n;++i)a[i]=A[i-1],update(i);
Cayley_Hamilton::init(R[cnt],A,R[cnt].size()-1);
}
}
int main(){
n=read();
init_w();
for(ri i=1,u,v;i<n;++i){
u=read(),v=read();
e[u].push_back(v);
e[v].push_back(u);
}
rt=read();
f[rt][0]=1;
int tim=n*2+15,K=read();
for(ri T=1;T<=tim;++T)for(ri i=1;i<=n;++i)for(ri j=0;j<e[i].size();++j)Add(f[i][T],f[e[i][j]][T-1]);
if(K<=tim){
for(ri i=1;i<=n;++i)cout<<f[i][K]<<' ';
puts("");
return 0;
}
Berlekamp_Massey::build(tim,f[rt]);
poly g=Cayley_Hamilton::query(K);
for(ri i=1,ss=0,up=Cayley_Hamilton::k;i<=n;++i,ss=0){
for(ri j=0;j<up;++j)Add(ss,mul(f[i][j],g[j]));
cout<<ss<<' ';
}
return 0;
}
来源:https://blog.csdn.net/dreaming__ldx/article/details/98961476