Calculating returns from a dataframe with financial data

懵懂的女人 提交于 2019-12-02 22:32:39
Matti John

Instead of slicing, use .shift to move the index position of values in a DataFrame/Series. For example:

returns = (vfiax_monthly.open - vfiax_monthly.open.shift(1))/vfiax_monthly.open.shift(1)

This is what pct_change is doing under the bonnet. You can also use it for other functions e.g.:

(3*vfiax_monthly.open + 2*vfiax_monthly.open.shift(1))/5

You might also want to looking into the rolling and window functions for other types of analysis of financial data.

The easiest way to do this is to use the DataFrame.pct_change() method.

Here is a quick example

In[1]: aapl = get_data_yahoo('aapl', start='11/1/2012', end='11/13/2012')

In[2]: appl
Out[2]: 
          Open    High     Low   Close    Volume  Adj Close
Date                                                           
2012-11-01  598.22  603.00  594.17  596.54  12903500     593.83
2012-11-02  595.89  596.95  574.75  576.80  21406200     574.18
2012-11-05  583.52  587.77  577.60  584.62  18897700     581.96
2012-11-06  590.23  590.74  580.09  582.85  13389900     580.20
2012-11-07  573.84  574.54  555.75  558.00  28344600     558.00
2012-11-08  560.63  562.23  535.29  537.75  37719500     537.75
2012-11-09  540.42  554.88  533.72  547.06  33211200     547.06
2012-11-12  554.15  554.50  538.65  542.83  18421500     542.83
2012-11-13  538.91  550.48  536.36  542.90  19033900     542.90

In[3]: aapl.pct_change()
Out[3]:
                Open      High       Low     Close    Volume  Adj Close
Date                                                                   
2012-11-01       NaN       NaN       NaN       NaN       NaN        NaN
2012-11-02 -0.003895 -0.010033 -0.032684 -0.033091  0.658945  -0.033090
2012-11-05 -0.020759 -0.015378  0.004959  0.013558 -0.117186   0.013550
2012-11-06  0.011499  0.005053  0.004311 -0.003028 -0.291453  -0.003024
2012-11-07 -0.027769 -0.027423 -0.041959 -0.042635  1.116864  -0.038263
2012-11-08 -0.023020 -0.021426 -0.036815 -0.036290  0.330747  -0.036290
2012-11-09 -0.036049 -0.013073 -0.002933  0.017313 -0.119522   0.017313
2012-11-12  0.025406 -0.000685  0.009237 -0.007732 -0.445323  -0.007732
2012-11-13 -0.027502 -0.007250 -0.004251  0.000129  0.033244   0.000129
rgalbo

The best way to calculate forward looking returns without any chance of bias is to use the built in function pd.DataFrame.pct_change(). In your case all you need to use is this function since you have monthly data, and you are looking for the monthly return.

If, for example, you wanted to look at the 6 month return, you would just set the param df.pct_change(periods = 6) and that will give you the 6 month percent return.

Because you have a relatively small data set, the easiest way is to resample on the parameters that you need to calculate the data on then use the pct_change() function again.

However because of the nice properties of log it is common to use the formula for calculating returns (if you plan on doing statistics on the return series):

Which you would implement as such:

log_return = np.log(vfiax_monthly.open / vfiax_monthly.open.shift())

Could also use a mix of diff and shift methods of pandas series:

retrun = vfiax_monthly.open.diff()/vfiax_monthly.open.shift(1)
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!