I'm trying so solve a problem that is kind of similar to this post. My original data is a text file that contains values (observations) of several sensors. Each observation is given with a timestamp but the sensor name is given only once, and not in each line. But there a several sensors in one file.
Time MHist::852-YF-007
2016-05-10 00:00:00 0
2016-05-09 23:59:00 0
2016-05-09 23:58:00 0
2016-05-09 23:57:00 0
2016-05-09 23:56:00 0
2016-05-09 23:55:00 0
2016-05-09 23:54:00 0
2016-05-09 23:53:00 0
2016-05-09 23:52:00 0
2016-05-09 23:51:00 0
2016-05-09 23:50:00 0
2016-05-09 23:49:00 0
2016-05-09 23:48:00 0
2016-05-09 23:47:00 0
2016-05-09 23:46:00 0
2016-05-09 23:45:00 0
2016-05-09 23:44:00 0
2016-05-09 23:43:00 0
2016-05-09 23:42:00 0
Time MHist::852-YF-008
2016-05-10 00:00:00 0
2016-05-09 23:59:00 0
2016-05-09 23:58:00 0
2016-05-09 23:57:00 0
2016-05-09 23:56:00 0
2016-05-09 23:55:00 0
2016-05-09 23:54:00 0
2016-05-09 23:53:00 0
2016-05-09 23:52:00 0
2016-05-09 23:51:00 0
2016-05-09 23:50:00 0
2016-05-09 23:49:00 0
2016-05-09 23:48:00 0
2016-05-09 23:47:00 0
2016-05-09 23:46:00 0
2016-05-09 23:45:00 0
2016-05-09 23:44:00 0
2016-05-09 23:43:00 0
2016-05-09 23:42:00 0
Therefore I want to configure Hadoop to split the file at those lines where the sensor-information is given. Then read the sensor name (e.g. 852-YF-007 and 852-YF-008) from those lines and use MapReduce for reading the values for each sensor accordingly.
I did this in Python (Jupyter Notebook):
sheet = sc.newAPIHadoopFile(
'/user/me/sample.txt',
'org.apache.hadoop.mapreduce.lib.input.TextInputFormat',
'org.apache.hadoop.io.LongWritable',
'org.apache.hadoop.io.Text',
conf={'textinputformat.record.delimiter': 'Time\tMHist'}
)
sf = sheet.filter(lambda (k, v): v)
sf.map(lambda (k, v): v).splitlines())
sf.take(50)
The output is like this:
[[u'::852-YF-007\t',
u'2016-05-10 00:00:00\t0',
u'2016-05-09 23:59:00\t0',
u'2016-05-09 23:58:00\t0',
u'2016-05-09 23:57:00\t0',
u'2016-05-09 23:56:00\t0',
u'2016-05-09 23:55:00\t0',
u'2016-05-09 23:54:00\t0',
u'2016-05-09 23:53:00\t0',
u'2016-05-09 23:52:00\t0',
u'2016-05-09 23:51:00\t0',
u'2016-05-09 23:50:00\t0',
u'2016-05-09 23:49:00\t0',
u'2016-05-09 23:48:00\t0',
u'2016-05-09 23:47:00\t0',
u'2016-05-09 23:46:00\t0',
u'2016-05-09 23:45:00\t0',
u'2016-05-09 23:44:00\t0',
u'2016-05-09 23:43:00\t0',
u'2016-05-09 23:42:00\t0'],
[u'::852-YF-008\t',
u'2016-05-10 00:00:00\t0',
u'2016-05-09 23:59:00\t0',
u'2016-05-09 23:58:00\t0',
u'2016-05-09 23:57:00\t0',
u'2016-05-09 23:56:00\t0',
u'2016-05-09 23:55:00\t0',
u'2016-05-09 23:54:00\t0',
u'2016-05-09 23:53:00\t0',
u'2016-05-09 23:52:00\t0',
u'2016-05-09 23:51:00\t0',
u'2016-05-09 23:50:00\t0',
u'2016-05-09 23:49:00\t0',
u'2016-05-09 23:48:00\t0',
u'2016-05-09 23:47:00\t0',
u'2016-05-09 23:46:00\t0',
u'2016-05-09 23:45:00\t0',
u'2016-05-09 23:44:00\t0',
u'2016-05-09 23:43:00\t0',
u'2016-05-09 23:42:00\t0']]
My question is, how to further process this to extract the sensor name and having the value-lines for that sensor. Somewhat likes this
852-YF-007 --> array of sensor_lines
852-YF-008 --> array of sensor_lines
The lines themselves will be then split into timestamp and value later on. But I'm more interested in splitting the sensor names from the lines.
Personally I would:
extend delimiter with
::
sheet = sc.newAPIHadoopFile( path, 'org.apache.hadoop.mapreduce.lib.input.TextInputFormat', 'org.apache.hadoop.io.LongWritable', 'org.apache.hadoop.io.Text', conf={'textinputformat.record.delimiter': 'Time\tMHist::'} )
drop keys:
values = sheet.values()
filter out empty entries
non_empty = values.filter(lambda x: x)
split:
grouped_lines = non_empty.map(str.splitlines)
separate keys and values:
from operator import itemgetter pairs = grouped_lines.map(itemgetter(0, slice(1, None)))
and finally split values:
pairs.flatMapValues(lambda xs: [x.split("\t") for x in xs])
All of that can done with a single function of course:
import dateutil.parser
def process(pair):
_, content = pair
clean = [x.strip() for x in content.strip().splitlines()]
if not clean:
return []
k, vs = clean[0], clean[1:]
for v in vs:
try:
ds, x = v.split("\t")
yield k, (dateutil.parser.parse(ds), float(x)) # or int(x)
except ValueError:
pass
sheet.flatMap(process)
来源:https://stackoverflow.com/questions/38117391/pyspark-read-map-and-reduce-from-multiline-record-textfile-with-newapihadoopfi