洛谷 P1003 铺地毯
JDOJ 1744: [NOIP2011]铺地毯 D1 T1
Description
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有n 张地毯,编号从1 到n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
【数据范围】
对于 30%的数据,有n≤2;
对于 50%的数据,0≤a, b, g, k≤100;
对于 100%的数据,有0≤n≤10,000,0≤a, b, g, k≤100,000。
Input
输入共 n+2 行。
第一行,一个整数 n,表示总共有n 张地毯。
接下来的 n 行中,第i+1 行表示编号i 的地毯的信息,包含四个正整数a,b,g,k,每
两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在x
轴和y 轴方向的长度。
第 n+2 行包含两个正整数x 和y,表示所求的地面的点的坐标(x,y)
Output
输出共 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1。
Sample Input
3 1 0 2 3 0 2 3 3 2 1 3 3 2 2 sample input2: 3 1 0 2 3 0 2 3 3 2 1 3 3 4 5
Sample Output
3 sample output2: -1
HINT
【输入输出样例2说明】
如上图,1 号地毯用实线表示,2 号地毯用虚线表示,3 号用双实线表示,点(4,5)
Source
题解:
逆向思维的一个应用。有一种离线的味道。
为什么说是逆向思维呢?
一般来讲,可能大家会这么想大佬请忽略这句话:正向枚举,一个个打标记,最后直接\(O(1)\)查询所求坐标点的编号就可以。
但是这样的时空复杂度都过不去...空间更明显一些,开不下数组。而我们这道题又不能用离散化。所以我们考虑逆向解决这个问题:我们把所有的地毯存在结构体中,维护它左下及右上两个点的坐标。如果一个点横坐标大于左下点的横坐标,且小于右上点的横坐标(纵坐标同理),那么就可以判定在这个地毯上。那么我们先把所有地毯都铺上去,然后逆向枚举每一个地毯,什么时候所求点符合要求了,那么当前的地毯就是答案,如果所有的地毯都遍历过了还是没找到,就是\(-1\)的情况。
代码:
#include<cstdio> using namespace std; const int maxn=1e4+10; int n; struct node { int x,y,a,b; }c[maxn]; int qx,qy; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) { int a,b,g,k; scanf("%d%d%d%d",&a,&b,&g,&k); c[i].x=a;c[i].y=b; c[i].a=a+g;c[i].b=b+k; } scanf("%d%d",&qx,&qy); for(int i=n;i>=0;i--) { if(!i) { printf("-1"); return 0; } if(qx>=c[i].x && qx<=c[i].a && qy>=c[i].y && qy<=c[i].b) { printf("%d",i); return 0; } } }