最大似然估计与最大后验估计
本文首发自公众号: RAIS ,公式显示错误请到: 这里 查看。 前言 本系列文章为 《Deep Learning》 读书笔记,可以参看原书一起阅读,效果更佳。 MLE VS MAP 最大似然函数(MLE)和最大后验概率估计(MAP)是两种完全不同的估计方法,最大似然函数属于频率派统计(认为存在唯一真值 θ),最大后验估计属于贝叶斯统计(认为 θ 是一个随机变量,符合一定的概率分布),这是两种认识方法的差异。模型不变,概率是参数推数据,统计是数据推参数。 最大似然估计 似然函数是一种关于模型中参数的函数,是根据模型的观测值,估计模型中参数的值。给定输出 x ,关于 θ 的似然函数 L(θ|x) 数值上等于给定参数 θ 后变量 X 的概率。其数学定义为: $$ L(θ|x)=f_θ(x)=P_θ(X=x) $$ 最大似然估计是其中的一种好的估计,在样本趋近于无穷时,最大似然是收敛率最好的渐进估计,且由于它的一致性和统计效率,在机器学习中也是首选的估计方法。在独立同分布情况下: $$ \hatθ_{MLE}=argmaxP(X;θ)=argmaxP(x_1;θ)P(x_2;θ)...P(x_n;θ) =argmax\log\prod_{i=1}^nP(x_i;θ)\\=argmax\sum_{i=1}^n\log P(x_i;θ) =argmin-\sum_{i=1}^n\log P