贝叶斯的三个参数估计
概率与统计 概率:在给定数据生成过程下观测研究数据的性质;模型和参数->数据;推理 统计:根据观测的数据,反向思考其数据的生成过程;数据->模型和参数:归纳 关系:概率论是统计学的数学基础,统计是对概率论的应用 描述统计和推断统计 描述统计:描绘或总结观察量基本情况(均值,方差,中位数,四分位数等) 推断统计:根据得到的部分数据推测总体数据的情况(参数统计,非参数统计,估计量,真实分布,经验分布) “似然”与“概率”: 在英语中:似然(likelihood)和概率(probability)都指事件发生的可能性 在统计中:概率是已知参数,对结果可能性的预测,似然是已知结果,对参数是某一个值的可能性预测。 对于函数 \(P(x|\theta)\) 如果 \(\theta\) 已知且保持不变, \(x\) 是变量,则函数 \(P(x|\theta)\) 称为概率函数,表示不同 \(x\) 出现的概率 如果 \(x\) 已知且保持不变, \(\theta\) 是变量,则函数 \(P(x|\theta)\) 称为似然函数,表示不同 \(\theta\) 下, \(x\) 出现的概率,也记做 \(L(\theta|x)\) 或 \(L(X;\theta)\) 或 \(f(x;\theta)\) 频率学派与贝叶斯学派 频率学派与贝叶斯学派只是解决问题的角度不同 频率学派从「自然」角度出发