样本方差

深度学习基础问题

独自空忆成欢 提交于 2019-12-14 04:44:36
文章目录 基础 1. 常见的梯度下降方法及优缺点——优化器 梯度下降的推导 Momentum——优化器 指数加权移动平均 Nesterov动量 Adagrad——优化器 Adadelta——优化器 RMSprop——优化器 Adam——优化器 2. dropout原理以及为什么能用于防止过拟合? 3. 为什么需要Normalization 4.[Batch Normalization的理解](https://zh.gluon.ai/chapter_convolutional-neural-networks/batch-norm.html) 5. BN的前向传播和反向传播公式 6. BN的使用场景 7. BN和Dropout共同使用时会出现的问题 8. LN的作用 9. [梯度消失与梯度膨胀,以及6种解决措施](https://blog.csdn.net/qq_25737169/article/details/78847691) 10. 为什么神经网络参数不能全部初始化为全0 一、神经网络基础和前馈神经网络 1、激活函数的比较 2、神经网络结构哪几种?各自都有什么特点? 3、前馈神经网络叫做多层感知机是否合适? 4、前馈神经网络怎么划分层? 5、如何理解通用近似定理? 6、怎么理解前馈神经网络中的反向传播?具体计算流程是怎样的? 7、在深度学习中,网络层数增多会伴随哪些问题,怎么解决

主成分分析(PCA)原理详解

我的未来我决定 提交于 2019-12-10 10:07:52
个人分类: 机器学习与Python 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhongkelee/article/details/44064401 转载请声明出处: http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA简介 1. 相关背景 上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会。 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的。盲目减少指标会损失很多信息,容易产生错误的结论。 因此需要找到一个合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。由于各变量间存在一定的相关关系,因此有可能用较少的综合指标分别综合存在于各变量中的各类信息。主成分分析与因子分析就属于这类降维的方法。 2. 问题描述

机器学习(十)数据降维(PCA与LDA)

会有一股神秘感。 提交于 2019-12-10 08:29:16
机器学习(十) 数据降维(此处讲PCA与LDA) 背景: 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性。如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论。 因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。由于各变量之间存在一定的相关关系,因此可以考虑将关系紧密的变量变成尽可能少的新变量,使这些新变量是两两不相关的,那么就可以用较少的综合指标分别代表存在于各个变量中的各类信息。主成分分析与因子分析就属于这类降维算法。 简介: 降维就是一种对高维度特征数据预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为应用非常广泛的数据预处理方法。 降维具有如下一些优点: 使得数据集更易使用。 降低算法的计算开销。 去除噪声。 使得结果容易理解。 PCA PCA概念: PCA

假设检验总结以及如何用python进行假设检验(scipy)

倖福魔咒の 提交于 2019-12-07 18:56:28
几种常见的假设检验总结如下: 假设检验名称 Z检验 t检验 χ2检验 F检验 原假设 H 0 : μ≥μ 0 H 0 : μ≤μ 0 H 0 : μ=μ 0 (样本和总体均值) H 0 : μ 1 -μ 2 ≥0 H 0 : μ 1 -μ 2 ≤0 H 0 : μ 1 -μ 2 =0 (两总体均值) H 0 : μ d ≥0 H 0 : μ d ≤0 H 0 : μ d =0 (两总体前后差值均值) H 0 : σ 2 ≥σ 0 2 H 0 : σ 2 ≤σ 0 2 H 0 : σ 2 =σ 0 2 (样本和总体方差) H 0 : σ 1 2 ≤σ 2 2 H 0 : σ 1 2 =σ 2 2 (两总体方差,即方差齐性) H 0 : 两类别型变量相互独立 (独立性检验) H 0 : 总体服从某个概率分布 (拟合优度检验) H 0 : 总体均值相等 (方差分析)--- 通常用于三个及以上的总体 备择假设 H a : μ<μ 0 H a : μ>μ 0 H a : μ≠μ 0 (样本和总体均值) H a : μ 1 -μ 2 <0 H a : μ 1 -μ 2 >0 H a : μ 1 -μ 2 ≠0 (两总体均值) H a : μ d <0 H a : μ d >0 H a : μ d ≠0 (两总体前后差值均值) H a : σ 2 <σ 0 2 H a : σ 2 >σ 0 2

优达(Udacity)customer_segments

我与影子孤独终老i 提交于 2019-12-06 15:04:50
github地址 机器学习纳米学位 非监督学习 项目 3: 创建用户分类 欢迎来到机器学习工程师纳米学位的第三个项目!在这个notebook文件中,有些模板代码已经提供给你,但你还需要实现更多的功能来完成这个项目。除非有明确要求,你无须修改任何已给出的代码。以 ‘练习’ 开始的标题表示接下来的代码部分中有你必须要实现的功能。每一部分都会有详细的指导,需要实现的部分也会在注释中以 ‘TODO’ 标出。请仔细阅读所有的提示! 除了实现代码外,你还 必须 回答一些与项目和你的实现有关的问题。每一个需要你回答的问题都会以 ‘问题 X’ 为标题。请仔细阅读每个问题,并且在问题后的 ‘回答’ 文字框中写出完整的答案。我们将根据你对问题的回答和撰写代码所实现的功能来对你提交的项目进行评分。 提示:**Code 和 Markdown 区域可通过 **Shift + Enter 快捷键运行。此外,Markdown可以通过双击进入编辑模式。 开始 在这个项目中,你将分析一个数据集的内在结构,这个数据集包含很多客户真对不同类型产品的年度采购额(用 金额 表示)。这个项目的任务之一是如何最好地描述一个批发商不同种类顾客之间的差异。这样做将能够使得批发商能够更好的组织他们的物流服务以满足每个客户的需求。 这个项目的数据集能够在 UCI机器学习信息库 中找到.因为这个项目的目的,分析将不会包括’Channel

机器学习:数据清洗和特征选择

孤街醉人 提交于 2019-12-06 07:01:23
数据清洗和特征选择 数据清洗 清洗过程 数据预处理: 选择数据处理工具:数据库、Python相应的包; 查看数据的元数据及数据特征; 清理异常样本数据: 处理格式或者内容错误的数据; 处理逻辑错误数据:数据去重,去除/替换不合理的值,去除/重构不可靠的字段值; 处理不需要的数据:在进行该过程时,要注意备份原始数据; 处理关联性验证错误的数据:常应用于多数据源合并的过程中。 采样: 数据不均衡处理:上采样、下采样、SMOTE算法 样本的权重问题 数据不平衡 在实际应用中,数据的分布往往是不均匀的,会出现"长尾现象",即绝大多数的数据在一个范围/属于一个类别,而在另外一个范围或者类别中,只有很少一部分数据。此时直接采用机器学习效果不会很好,因此需要对数据进行转换操作。 长尾效应: 解决方案01 设置损失函数的权重, 使得少数类别数据判断错误的损失大于多数类别数据判断错误的损失 ,即:当我们的少数类别数据预测错误的时候,会产生一个比较大的损失值,从而导致模型参数往让少数类别数据预测准确的方向偏。 可通过设置sklearn中的class_weight参数来设置权重。 解决方案02 下采样/欠采样(under sampling): 从多数类中随机抽取样本从而减少多数类别样本数据 ,使数据达到平衡的方式。 集成下采样/欠采样:采用普通的下采样方式会导致信息丢失

《集成学习》

喜你入骨 提交于 2019-12-05 18:07:08
介绍 Stacking 、 Bagging 和 Boosting 三种方式。 一、 Stacking 思想:由原始的训练集训练出若干个单模型,将单模型的输出结果作为样本特征进行整合,并把原始样本标记作为新数据样本标记,生成新的训练集。再根据训练集训练一个新模型,并对样本进行预测。 注意:模型训练时,如果直接使用一级模型对初始的训练样本进行预测来产生二级训练集,会产生较大的过拟合风险。因而,常采用 " 交叉验证法 " 或 " 留一法 " 来由一级模型未使用的样本产生二级模型的训练集。将样本划分为 K 份,选择 K-1 份作为 " 训练集 " ,剩余的一份作为 " 测试集 ", 因而总共有 K 种组合方式。每次使用一种方式来训练 T 个模型(模型可以是 " 异质的 " ,也可以是 " 同质的 " ),利用测试集产生一份训练数据作为样本特征,对应的原始测试集数据的样本标记被作为新数据样本标记来使用。最后,将由一级模型产生的 K 次结果组合到一起,作为二级模型的输入进行训练模型。 二、 Bagging 思想:对训练集进行有放回的抽样得到子训练集,比较著名的是 0.632 自助法。每个基学习器基于不同的子训练集进行训练,然后综合所有基学习器的预测值得到最终的预测结果。常采用 " 投票法 " ,即将票数最多的类别作为预测类别。 三、 Boosting 思想:模型的训练是按照顺序的

PRML学习笔记第一章

匿名 (未验证) 提交于 2019-12-03 00:41:02
【转】 模式识别的目标 自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等。 模型选择和参数调节 类似的一族规律通常可以以一种模型的形式为表达,选择合适模型的过程称为模型选择(Model Selection)。模型选择的目的只是选择模型的形式,而模型的参数是未定的。 从数据中获得具体规律的过程称为训练或学习,训练的过程就是根据数据来对选定的模型进行参数调节(Parameter Estimation)的过程,此过程中使用的数据为训练数据集(Training Set)。 对于相同数据源的数据来讲,规律应该是一般的(泛化Generalization),因此评估一个学习结果的有效性可以通过使用测试数据集(Testing Set)来进行的。 预处理 对于大多数现实中的数据集来讲,使用其进行学习之前,通常需要进行预处理,以提高学习精度及降低学习的开销。 以图像识别为例,若以像素做为一个特征,往往一幅图像的特征就能达到几万的数量级,而很多特征(如背景色)都是对于图像辨识起不到太大作用的,因此对于图像数据集,预处理过程通常包括维数约减(特征变换,特征选择),仅保留具有区分度的特征。 文本数据分类任务中,对训练文本也有类似的处理方式,只不过此时扮演特征的是单词,而不是像素值。 监督学习和非监督学习 输入向量(input vector): ,响应向量(target vector):

浅谈均值、方差、标准差、协方差的概念及意义

匿名 (未验证) 提交于 2019-12-03 00:34:01
统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述: 均值: 标准差: 方差: 均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。 以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],两个集合的均值都是10,但显然两个集合的差别是很大的,计算两者的标准差,前者是8.3后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是n,是因为这样能使我们以较小的样本集更好地逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。 标准差和方差一般是用来描述一维数据的,但现实生活中我们常常会遇到含有多维数据的数据集,最简单的是大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子的欢迎程度是否存在一些联系。协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义: 来度量各个维度偏离其均值的程度,协方差可以这样来定义: 协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义)

统计学基础知识

僤鯓⒐⒋嵵緔 提交于 2019-12-01 17:06:17
为理解下面的知识需要先区分好下面几个概念: 总体均值: \(u\) 总体标准差: \(σ\) 样本均值: \(u'\) 样本标准差: \(σ'\) 样本中符合条件A的占比: \(p'\) 是样本大小: \(n\) 总体大小: \(N\) 抽样 数据分析中,虽然数据越多越齐越好,可是受限于各类因素的制约,我们并不能获取全部的数据。比如Excel的性能限制,比如数据库不支持大文件导出、或者是无法全量进行的用户调研等。 抽样是一种应对方法,通过样本来推断总体,抽样结果提供的仅仅是相应总体特征的估计,「估计」这一点很重要。 抽样有很多方式,样本首要满足随机性。比如进行社会访谈,你不能只选择商场人流区,因为采访到的人群明显是同一类人群,反而会遗漏郊区和乡镇的人群,遗漏宅男,遗漏老人。 互联网产品中,抽样也无处不在,大名鼎鼎的AB测试就是一种抽样,选取一部分人群验证运营策略或者产品改进。通常筛选用户ID末尾的数字,比如末尾选择0~4,于是抽样出了50%的用户,这既能保证随机性,也能保证控制性。 毕竟抽样的目的是验证和检验,需要始终保证用户群体的完全隔离,不能用户一会看到老界面,一会看到改进后的新界面。以上也适用于推荐算法的冠军挑战,用户分群等。 至于放回抽样,分层抽样,在互联网的数据分析中用不太到,这里就略过了。 点估计 设总体 X 的分布函数形式已知, 但它的一个或多个参数为未知,