数学期望、方差、标准差、协方差
数学期望 数学期望E(x)完全由随机变量X的概率分布所确定,若X服从某一分布,也称E(x)是这一分布的数学期望。 数学期望的定义是实验中每次可能的结果的概率乘以其结果的总和。 离散型随机量的数学期望 定义:离散型随机变量的所有可能取值 xixi 与其对应的概率 P(xi) 乘积的和为该离散型随机量的数学期望,记为 E(X)。 公式: E(X)=∑i=1nxiPi 连续型随机量的数学期望 定义:假设连续型随机变量 XX的概率密度函数为 f(x),如果积分∫+∞−∞xf(x)dx绝对收敛,则称这个积分的值为连续型随机量的数学期望,记为 E(X)。 公式: E(X)=∫+∞−∞xf(x)dx 数学期望的性质 设C为常数: E(C)==C 设C为常数: E(CX)==CE(X) 加法:E(X+Y)==E(X)+E(Y) 当X和Y相互独立时,E(XY)=)=E(X)E(Y) (主意,X和Y的相互独立性可以通过下面的“协方差”描述) 数学期望的意义 根据“大数定律”的描述,这个数字的意义是指随着重复次数接近无穷大时,数值的算术平均值几乎肯定收敛于数学期望值,也就是说数学期望值可以用于预测一个随机事件的平均预期情况。 方差 数学期望给出了随机变量的平均大小,现实生活中我们还经常关心随机变量的取值在均值周围的散布程度,而方差就是这样的一个数字特征。 方差有两个定义,一个是统计学的定义