协方差矩阵
概念 协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 这个解释摘自维基百科,看起来很是抽象,不好理解。其实简单来讲,协方差就是衡量两个变量相关性的变量。当协方差为正时,两个变量呈正相关关系(同增同减);当协方差为负时,两个变量呈负相关关系(一增一减)。 而协方差矩阵,只是将所有变量的协方差关系用矩阵的形式表现出来而已。通过矩阵这一工具,可以更方便地进行数学运算。 数学定义 回想概率统计里面关于方差的数学定义: \[ Var(X)=\frac{\sum_{i=1}^n{(x_i-\overline x)(x_i-\overline x)}}{n-1} \] 协方差的数学定义异曲同工: \[ Cov(X,Y)=\frac{\sum_{i=1}^n{(x_i-\overline x)(y_i-\overline y)}}{n-1} \] 这里的 \(X\) , \(Y\) 表示两个变量空间。用机器学习的话讲,就是样本有 \(x\) 和 \(y\) 两种特征,而 \(X\) 就是包含所有样本的 \(x\) 特征的集合, \(Y\) 就是包含所有样本的 \(y\) 特征的集合。 协方差矩阵 两个变量的协方差矩阵 有了上面的数学定义后,我们可以来讨论协方差矩阵了。当然,协方差本身就能够处理二维问题