PCA主成分分析
PCA的流程: 代码参考: https://www.cnblogs.com/clnchanpin/p/7199713.html 协方差矩阵的计算 https://docs.scipy.org/doc/numpy/reference/generated/numpy.cov.html 思想: https://www.cnblogs.com/clnchanpin/p/7199713.html 求解协方差矩阵的特征值和特征向量 为什么PCA第一步是进行去掉数据中的平均值? 因为每列数据减去该列的平均值后才能进行协方差计算。 按照特征值的大小进行排序,用到了numpy 中argsort函数 https://blog.csdn.net/maoersong/article/details/21875705 这篇对numpy中的matrix 总结的很好 https://www.cnblogs.com/sumuncle/p/5760458.html 三、特征值和特征向量的应用实例 1、主成分分析(Principle Component Analysis, PCA) (1)方差、协方差、相关系数、协方差矩阵 方差: 协方差: , , **方差是衡量单变量的离散程度,协方差是衡量两个变量的相关程度(亲疏),协方差越大表明两个变量越相似(亲密),协方差越小表明两个变量之间相互独立的程度越大。 相关系数: