深度学习概述:从感知机到深度网络
(注:本文译自一篇博客,作者行文较随意,我尽量按原意翻译,但作者所介绍的知识还是非常好的,包括例子的选择、理论的介绍都很到位,由浅入深, 源文地址 ) 近些年来,人工智能领域又活跃起来,除了传统了学术圈外,Google、Microsoft、facebook等工业界优秀企业也纷纷成立相关研究团队,并取得了很多令人瞩目的成果。这要归功于社交网络用户产生的大量数据,这些数据大都是原始数据,需要被进一步分析处理;还要归功于廉价而又强大的计算资源的出现,比如GPGPU的快速发展。 除去这些因素,AI尤其是机器学习领域出现的一股新潮流很大程度上推动了这次复兴——深度学习。本文中我将介绍深度学习背后的关键概念及算法,从最简单的元素开始并以此为基础进行下一步构建。 (本文作者也是Java deep learning library的作者,可以从 此处 获得,本文中的例子就是使用这个库实现的。如果你喜欢,可以在Github上给个星~。用法介绍也可以从 此处 获得) 机器学习基础 如果你不太熟悉相关知识,通常的机器学习过程如下: 1、机器学习算法需要输入少量标记好的样本,比如10张小狗的照片,其中1张标记为1(意为狗)其它的标记为0(意为不是狗)——本文主要使用监督式、二叉分类。 2、这些算法“学习”怎么样正确将狗的图片分类,然后再输入一个新的图片时