[python机器学习及实践(6)]Sklearn实现主成分分析(PCA)
1.PCA原理 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 PCA算法: 2.PCA的实现 数据集: 64维的手写数字图像 代码: #coding=utf-8 import numpy as np import pandas as pd from sklearn.decomposition import PCA from matplotlib import pyplot as plt from sklearn.svm import LinearSVC from sklearn.metrics import classification_report #1.初始化一个线性矩阵并求秩 M = np.array([[1,2],[2,4]]) #初始化一个2*2的线性相关矩阵 np.linalg.matrix_rank(M,tol=None) # 计算矩阵的秩 #2.读取训练数据与测试数据集。 digits_train = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/optdigits/optdigits.tra', header=None)