翻译与学习:基于深度卷积神经网络的ImageNet分类器
基于卷积神经网络的ImageNet分类器 作者: Alex Krizhevsky-多伦多大学(加拿大) Ilye Sutskever-多伦多大学 Geoffrey E. Hinton-多伦多大学 摘要 我们训练了一个大型的深度卷积神经网络去将2010年ILSVRC挑战杯包含的120万高分辨率图像分类成1000种不同的类别。在测试数据方面,我们取得了远超过去最佳水平的效果,分别为17%和37.5%的top-5和top-1错误率。有着6000万参数和65万神经元的神经网络由5个部分连接Max池化层的卷积层和3个全连接层连带着1000路softmax组成。为了加快训练速度。我们采用非饱和神经元和一个高效的卷积操作的GPU执行器。为了降低全连接层的过拟合,我们采用了一项近期发展的已被证明有效的名为dropout的正则化方法。 1 引言 解决物体识别的最新方法必不可少的使用机器学习方法。为了提高他们的表现,我们可以收集更大的数据集,训练更有效的模型,并且使用更先进的技术去阻止过拟合。直到近期,有标识的图像数据集相当的小——大约数万张图片的状况才改变。简单的识别任务能够被有效的解决好在这一规模的数据集上,特别是如果他们采用了数据增强。例如,MNIST数字识别任务的最新错误率(0.3%)已接近人类表现。但现实场景中的对象表现出相当大的变异性,所以为了学习识别它们,使用更大的训练集是非常必要的