随机过程

随机过程学习笔记0

…衆ロ難τιáo~ 提交于 2020-02-03 00:04:32
随机过程的定义 随机变量:从样本空间到实数域的当时的映射; 样本空间:随机试验所有可能的结果; 在之前的概率论中,无论是中心极限定理还是大数定理,研究的都是一些相互独立的随机变量之间的关系和他们的统计特性。而随机过程所研究的是一族随机变量,且相互之间不是独立的。 对定义的理解: 随机变量族:随t变化的一族(无穷个)随机变量,且随机变量之间彼此有一定的关系,这个关系体现在t变化时,他们之间存在关系,可能时线性的,也可能是非线性的,即一族相互关联的随机变量构成了一个随机过程。例4中质点在直线上的随机游走,小虫在直线上的固定跳动,奇数偶数的讨论,充分说明了随机变量之间的关联性。 T:称为指标集或参数集,一般表示时间或空间;T是一个离散的可列集时,随机过程叫随机序列。 随机过程的描述:X(t,w)或 X(t),w表示一个样本点。 固定t,X(t,w)就是一个定义在样本空间Ω上的函数,即为一随机变量,取遍所有t,就是一族有关联的随机变量; 固定w,X(t,w)是一个关于参数t的确定函数,叫样本函数。即表示固定w,做了一次试验,取遍过程中的t,做了n次实验,也叫随机过程的一次实现,对随机过程观测了一遍。所有样本函数的集合确定了一个随机过程,如果能获得所有的样本函数,则随机过程的统计特性确定,但显然很多时候是不现实的。因此需要随机过程的数字特征和统计特性描述。 随机过程的分类 状态空间

白噪声

≡放荡痞女 提交于 2019-12-26 12:18:43
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 白噪声 ,是一种 功率谱密度 为常数的 随机信号 或 随机过程 。即,此信号在各个频段上的 功率 是一样的。由于 白光 是由各种频率(颜色)的单色光混合而成,因而 此信号的这种具有平坦功率谱的 性质被称作是“白色的”,此信号也因此被称作白噪声。相对的,其他不具有这一性质的 噪声 信号被称为 有色噪声 。 理想的白噪声具有无限 带宽 ,因而其能量是无限大,这在现实世界是不可能存在的。实际上,我们常常将 有限带宽 的 平整信号 视为白噪声,以方便进行数学分析。 1. 统计特性 白噪声过程现实实例 术语白噪声也常用于表示在相关空间的 自相关 为0的空域噪声信号,于是信号在 空间频率 域内就是“白色”的,对于角频率域内的信号也是这样,例如夜空中向各个角度发散的信号。右面的图片显示了计算机产生的一个有限长度的离散时间白噪声过程。 需要指出,相关性和概率分布是两个不相关的概念。“白色”仅意味着信号是不相关的,白噪声的定义除了要求均值为零外并没有对信号应当服从哪种概率分布作出任何假设。因此,如果某白噪声过程服从 高斯分布 ,则它是“高斯白噪声”。类似的,还有 泊松白噪声 、 柯西白噪声 等。人们经常将高斯白噪声与白噪声相混同,这是不正确的认识。根据 中心极限定理 ,高斯白噪声是许多现实世界过程的一个很好的近似

概率论与随机过程相关书籍点评

痞子三分冷 提交于 2019-12-03 23:54:19
概率论与随机过程相关书籍点评 这次讲一下我比较了解的概率论与随机过程的相关书籍,也讲一下相关知识的学习顺序。提到的书,如果没有特别注明,都是国内出版过的。 按北大的课程设置,相关课程是初等概率论、初等随机过程、初等随机分析,测度论,高等概率论、高等随机过程、高等随机分析(当然,课程名不是这样的)。后三门大概是基于测度论的前三门的强化。一般是大二下初等概率论,大三上初等随机过程,大三下测度论,大四上高等概率论,大四下高等随机过程,两门随机分析都是两年开一次,什么时候赶上什么时候学。 1 初等概率论 只需要一些微积分,可能还要一点线性代数。只是讲一些概率论的基础概念,理解难度不大(虽然我并没有资格说这种话,毕竟初等概率论考了专业课最低分...),看什么书没太有区别。 北大常用的是何书元的《概率论》和李贤平的《概率论基础》(最新是第三版,配有习题解答《概率论基础学习指导书》,用来刷题不错)。我觉得李贤平的书好一点。此外钟开莱有一本《初等概率论》(应该只有英文),Sheldon Ross有一本《概率论基础教程》,我只是翻过,应该都不错。 2 初等随机过程 这门课在北大叫做应用随机过程,据说是『随机过程随机过』的出处。我修这门课的时候,大岳老师说只要期中和期末加起来够60分就可以,结果期中平均分三十多...这门课需要修过初等概率论,可能还要一点常微分方程。讲离散时间和连续时间的马氏链

时间序列分析-基本概念

匿名 (未验证) 提交于 2019-12-02 23:39:01
1.随机过程 Y 是一个随机变量,与t有关 2.状态空间与参数空间 状态空间:对于一个随机过程,其取值所在的空间 参数空间:其随机过程中所有参数所在的空间,若参数空间离散,则Y t 为离散随机过程,若参数空间连续,则Y t 为连续随机过程 3.均值,方差,协方差 均值:u = E(Y t ) 自协方差函数:γ t,s = Conv(Y t , Y s ) 自相关函数:ρ t,s t , Y s )/ sqrt(Var(Y t )*Var(Y s 4.两个简单的随机过程 随机游动过程 e t ) = 0   Var(e t e 2 Y = Y + e t u = 0 Var(Y t ) = tσ e 2 滑动平均过程 e t ) = 0   Var(e t e 2 Y = (e t + e t-1 ) / 2 u t = 0 Var(Y t ) = 0.5 * σ e 2

从随机过程的熵率和马尔科夫稳态过程引出的一些思考 - 人生逃不过一场马尔科夫稳态

旧时模样 提交于 2019-11-26 19:21:01
1. 引言 0x1:人生就是一个马尔科夫稳态 每一秒我们都在做各种各样的选择,要吃青菜还是红烧肉、看电影还是看书、跑步还是睡觉,咋一看起来,每一个选择都是随机的,而人生又是由无数个这样的随机选择组成的结果。从这个前提往下推导,似乎可以得出一个结论,即人生是无常的,未来是不可预测的。但事实真的是如此吗? 以前的老人流行说一句话,三岁看小,七岁看老。这似乎是一句充满迷信主义色彩的俗语,但其实其中暗含了非常质朴而经典的理论依据,即随机过程不管其转移概率分布如何,随着时序的增大,最终会收敛在某个稳态上。用人话说就是:人在七岁时,其核心性格会定型,在今后的一生中,不管其经历了什么,最终都会殊途同归,到达同一个人生结局。 现在很流行一句话叫,性格决定命运。这句话从很多不同的学科中可以得到不同的解释,例如现代心理学会说性格的本质就是潜意识,而潜意识影响所有的思想和行为,进而影响了命运。社会行为学会说性格决定了你的人际网络拓朴结构与网络信息交互率等因素,而成功的人往往是那种同时占据了多个重要结构洞的关键人物,例如国家领导人或者公司高层。用信息论马尔柯夫随机过程的理论来解释就说,每个人的概率转移函数在很小的时候就会基本定型,对于每个人来说,出生、天赋这些都不是至关重要的因素,而相反,决定一个人最终能得到多少成就的决定因素是你的n,也即你能在多大程度上延伸生命的长度,生命周期n越长