概率、统计、最大似然估计、最大后验估计、贝叶斯定理、朴素贝叶斯、贝叶斯网络
这里写自定义目录标题 概率和统计是一个东西吗? 概率函数与似然函数 最大似然估计(MLE) 最大后验概率估计 最大后验估计的例子 贝叶斯派观点 VS 频率派观点 贝叶斯定理 朴素贝叶斯分类器 朴素贝叶斯分类器实例 贝叶斯网络 贝叶斯网络的结构形式 因子图 从贝叶斯网络来观察朴素贝叶斯 概率和统计是一个东西吗? 概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反。 概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等)。 举个例子,我想研究怎么养猪(模型是猪),我选好了想养的品种、喂养方式、猪棚的设计等等(选择参数),我想知道我养出来的猪大概能有多肥,肉质怎么样(预测结果)。 统计是,有一堆数据,要利用这堆数据去预测模型和参数。 仍以猪为例。现在我买到了一堆肉,通过观察和判断,我确定这是猪肉(这就确定了模型。在实际研究中,也是通过观察数据推测模型是/像高斯分布的、指数分布的、拉普拉斯分布的等等),然后,可以进一步研究,判定这猪的品种、这是圈养猪还是跑山猪还是网易猪,等等(推测模型参数)。 一句话总结: 概率是已知模型和参数,推数据。统计是已知数据,推模型和参数。 显然, 本文解释的MLE(最大似然估计)和MAP(最大后验估计)都是统计领域的问题。它们都是用来推测参数的方法(不是推测模型