矢量

图片的格式常用的有几种??

痞子三分冷 提交于 2019-11-29 05:31:57
文章转自 https://zhidao.baidu.com/question/15311803.html https://support.microsoft.com/zh-cn/help/320314/description-of-the-guidelines-for-selecting-the-appropriate-picture-fo 图片格式:光栅图片 BMP:Windows 位图 PCX:PC 画笔 PNG:可移植网络图形 JPEG:联合摄影专家组 GIF:图形交换格式 TIFF:标记图像文件格式 图片格式: 矢量图片 DXF:AutoCAD 绘图交换文件 CGM:计算机图形 图元文件 CDR:CorelDRAW! WMF:Windows 图元文件 EPS:Encapsulated PostScript EMF:增强型 图元文件 PICT:Macintosh 图片 图片格式:光栅图片 BMP:Windows 位图 Windows 位图可以用任何 颜色深度 (从黑白到 24 位颜色)存储单个光栅图像。Windows 位图文件格式与其他 Microsoft Windows 程序兼容。它不支持文件压缩,也不适用于 Web 页。 从总体上看,Windows 位图文件格式的缺点超过了它的优点。为了保证照片图像的质量,请使用 PNG 文件、JPEG 文件或 TIFF 文件。BMP

面对对大体量矢量数据ArcGIS的优化方法

孤街浪徒 提交于 2019-11-29 00:19:23
大数据量矢量数据的可视化需要解决的问题,就是如何在可接受的短时间内,能展示大数据量的矢量地图。 解决方案一:采用预先渲染的切片进行展示 切片是预先渲染的数据集,也是响应最快的展示方式。目前ArcGIS提供栅格切片和矢量切片两种切片格式。这两种切片格式各有利弊,如下表所示: 栅格切片 矢量切片 支持ArcGIS Desktop所有符号 支持 仅部分 支持高分辨屏幕自适应 不支持 支持 支持小比例尺下展示全部数据 支持 不支持,会自动简化数据。 支持动态改变样式 不支持 支持 生产耗时 耗时长 耗时短 由上述表格,可以得出,只有栅格切片才能支持展示全部数据。因此对于大数据量的矢量数据的展示,建议在小比例尺下预先生产栅格切片,并设置合理的比例尺。 解决方案二:使用查询图层进行动态聚合展示 在把大数据量的矢量数据进行可视化时,当地图缩放到小比例尺时,往往会出现地图上叠加了过多的要素,失去了地图应该表达的实际业务意义。因此,这时可以考虑使用按区域聚合的方法,制作具有实际业务意义的专题地图。具体方法如下: 1、创建用于聚合的区域,可以使用行政区域,或者使用Generate Tessellation工具创建六边形或正方形格网。 2、添加查询图层。通过SQL进行数据的动态聚合。这里可以使用两种SQL思路,第一是使用属性字段进行关联,第二种是使用空间SQL函数。显然第一种方法速度上是更快的

Python数据分析处理中的多种文件访问方式,看这个就对了

吃可爱长大的小学妹 提交于 2019-11-28 10:55:02
栅格文件访问和矢量文件访问 使用Python进行数据分析的过程中,我们常常要接触到两种文件,一种是矢量文件,另一种则是栅格文件,对于两种文件,我们都必须认识,并且掌握其读取和写入的方法。 1.矢量文件 a.认识矢量文件 矢量数据模型要素 (Feature)包括几何对象和属性信息两部分,几何对象可以用WKT(用于编程赋 值)和 WKB(用于数据库或二进制文件格式)。 dbf—属性信息 prj—投影信息 shp—图形格式,用于保存元素的几何实体。 shx—图形索引格式。几何体位置索引,记录每一个几何体在 shp文件之中的位置。 注意:每个文件必须是同类型的集合要素:点/线/面 b.读取矢量文件 基本信息读取: ds = ogr . Open ( filename , False ) #打开 Shape 文件(False - read only, True - read/write) layer = ds . GetLayer ( 0 ) #获取图层 spatialref = layer . GetSpatialRef ( ) #投影信息 lydefn = layer . GetLayerDefn ( ) #图层定义信息 geomtype = lydefn . GetGeomType ( ) #几何对象类型(wkbPoint, wkbLineString, wkbPolygon)

9个免费的矢量图网站

人盡茶涼 提交于 2019-11-28 01:47:23
寻找一些特别的,为众所不知的矢量图网站不是一件容易的事情,又要高质量,又要免费使用,尽管鱼和熊掌不能兼得,但是谁叫我们碰到了互联网时代呢,谁叫我们知道一句台词:一切皆有可能呢!这些免费的矢量图网站是我在互联网上搜索到的,经过权衡和对比,选择了9个比较不错的拿出来为大家分享。里面有的是博客网站,所以如果你对矢量图片有大量的研究,不如订阅他们,这样获取的速度较快,而且方便. 矢量图:计算机中显示的图形一般可以分为两大类——矢量图和位图。矢量图使用直线和曲线来描述图形,这些图形的元素是一些点、线、矩形、多边形、圆和弧线等等,它们都是通过数学公式计算获得的。例如一幅花的矢量图形实际上是由线段形成外框轮廓,由外框的颜色以及外框所封闭的颜色决定花显示出的颜色。由于矢量图形可通过公式计算获得,所以矢量图形文件体积一般较小。矢量图形最大的优点是无论放大、缩小或旋转等不会失真;最大的缺点是难以表现色彩层次丰富的逼真图像效果。Adobe公司的Illustrator、Corel公司的CorelDRAW是众多矢量图形设计软件中的佼佼者。大名鼎鼎的Flash MX制作的动画也是矢量图形动画。 1. Vecteezy Vecteezy拥有非常多的高质量矢量图片,而且可视化选择,免费下载,毫无限制。 2. FreeVectors.net FreeVectors.net 有一个庞大的矢量图片下载基地,可供免费下载

iPhone 6 / 6 Plus 设计·适配方案

≯℡__Kan透↙ 提交于 2019-11-27 16:32:49
iPhone 6 / 6 Plus 设计·适配方案 关于iPhone6/6+适配问题一直有争议,今天小编专门为大家整理了相关的有效方案,希望对大伙儿有帮助! 移动app开发中多种设备尺寸适配问题,过去只属于Android阵营的头疼事儿,只是很多设计师选择性地忽视android适配问题,只出一套iOS平台设计稿。随着苹果发布两种新尺寸的大屏iPhone 6,iOS平台尺寸适配问题终于还是来了,移动设计全面进入“杂屏”时代。看看下面三款iPhone尺寸和分辨率数据就知道屏幕有多杂了。 加上Android生态中纷繁复杂的各种奇葩尺寸,现在APP设计开发必须考虑适配大、中、小三种屏幕。所以如何做到交付一套设计稿解决适配大中小三屏的问题?设计和开发之间采用什么协作模式?一个基本思路是: 1、选择一种尺寸作为设计和开发基准; 2、定义一套适配规则,自动适配剩下两种尺寸; 3、特殊适配效果给出设计效果。 手机淘宝的iPhone 6/iPhone 6 Plus适配版本即将提交App store审核。先晒一下我们采用的协作模式,再慢慢说明原委。 第一步,视觉设计阶段,设计师按宽度750px(iPhone 6)做设计稿,除图片外所有设计元素用矢量路径来做。设计定稿后在750px的设计稿上做标注,输出标注图。同时等比放大1.5倍生成宽度1125px的设计稿,在1125px的稿子里切图。 第二步

矢量&凸包学习笔记

为君一笑 提交于 2019-11-27 08:39:01
矢量&凸包学习笔记 矢量 矢量(向量)的定义和表示法 定义:一条有方向的线段。 表示:如下图。 那么我们把这一条矢量写作: A B → \overrightarrow{AB} A B ,它的长度为 a a a ,记作 ∣ A B → ∣ \left|\overrightarrow{AB}\right| ∣ ∣ ∣ ​ A B ∣ ∣ ∣ ​ 。 矢量的运算 矢量的 加减 遵循 三角形法则 。 加: 根据三角形法则, ∣ A C → ∣ = ∣ A B → ∣ + ∣ B C → ∣ = a + b \left|\overrightarrow{AC}\right|=\left|\overrightarrow{AB}\right|+\left|\overrightarrow{BC}\right|=a+b ∣ ∣ ∣ ​ A C ∣ ∣ ∣ ​ = ∣ ∣ ∣ ​ A B ∣ ∣ ∣ ​ + ∣ ∣ ∣ ​ B C ∣ ∣ ∣ ​ = a + b 。 减: ∵ ∣ B C → ∣ = b \because \left|\overrightarrow{BC}\right|=b ∵ ∣ ∣ ∣ ​ B C ∣ ∣ ∣ ​ = b ∴ ∣ C B → ∣ ( ∣ B C ← ∣ ) = − b \therefore \left|\overrightarrow{CB}\right|(\left|

基于 HTML5 的 Web SCADA 报表

蓝咒 提交于 2019-11-27 06:54:25
背景 最近在一个 SCADA 项目中遇到了在 Web 页面中展示设备报表的需求。一个完整的报表,一般包含了筛选操作区、表格、Chart、展板等多种元素,而其中的数据表格是最常用的控件。在以往的工业项目中,所有的表格看起来千篇一律,就是通过数字和简单的背景颜色变化来展示相关信息。但是现在通过各种移动 App 和 Web 应用的熏陶,人们的审美和要求都在不断提高,尤其是在 Web 项目中,还采用老式的数字表格确实也有点落伍了。 如何选择一个合适的 HTML 前端表格控件?此处可以省略一万字。哈哈。jQuery、Angular、React 等阵营中的控件库中都有不少成熟案例,但是这些基于 DOM 的控件也有不足,一个是效率问题:如果在数据量很大表格的中采用自定义的单元格控件,对浏览器的负担实在太重,尤其是移动端。另一个问题是开发效率,上述的控件库中各自的封装程度、接口形式都有所不同,但整体上还是要求开发者对 CSS、JS 都有较深的了解。还有控件的复用、嵌入、发布、移植,也都是问题。 基于上面的考虑,最后采用了基于 Canvas 的 HT 。通过 HT 表格控件的自定义渲染接口,以及 Web Worker 的多线程数据模拟,实现的表格控件效果如下: http://www.hightopo.com/demo/pagetable/index.html 开始 首先我们要做的就是结合业务逻辑

【批注】技术选型 -- 绘图 DrawGraphics

女生的网名这么多〃 提交于 2019-11-27 03:49:15
原文转自: 技术选型 -- 绘图 DrawGraphics 作者:雷文宇 Web实现图形方式有3种:纯DOM节点、SVG矢量图和Canvas方式。纯DOM节点这种方式是一个基于旧版本浏览器,非主流Web绘图方式,并且性能不高的。当现主流的实现方式有两种:SVG和Canvas, SVG 矢量DOM节点绘制技术,由于其类似于DOM的工作方式,所有绘制出的图形都是以DOM节点的形态存在的。 当图形不复杂并且单位面积内所需要绘制的节点数少的时候 ,它的效率很高实现代价最小。而 Canvas 是最典型的像素绘制技术,也就是位图(Bitmap)绘制技术。它基础就是通过算法去绘制所有的点, 当图形复杂且有堆叠时 ,它的效率会比较高。 值得注意的是,当显示区域越大时,也就是分辨率越大时,它所需要的性能资源也就越多 。 SVG是基于盒模型的每一次绘制都有可能改变文档节点之间的关系, 不太适用绘制真正的矢量场景 。典型的例子就是画布的缩放。使用SVG方式缩放画布,只能改变画布的大小(就是改变画布坐标系单位与标准参考坐标系的 比率 )。虽然,SVG节点本身不会失真(因为,SVG节点自身是个矢量图)。 但SVG内的节点图标,或者其它非矢量元素都会随着自己的参考坐标系变化而失真(所以需要所有节点图标或其他元素作同比例缩放-transform)。 即使所有的节点都用矢量图形。也会有一个更严重的问题就是

了解FOC控制

谁说胖子不能爱 提交于 2019-11-26 09:29:11
磁场定向控制,因公司产品开发需要用到对永磁同步电机(PMSM)进行精确的位置控制,才开始从网上了解什么是FOC,有哪些数学公式,控制的过程是怎么样的,与大家分享,由于需要对电机进行位置控制,所以使用了14位分辨率的磁编码器。 FOC主要是通过对电机电流的控制实现对电机转矩(电流)、速度、位置的控制。通常是电流作为最内环,速度是中间环,位置作为最外环。 下图是电流环(最内环)的控制框图: 图一:电流环 在图一中,Iq_Ref是q轴(交轴)电流设定值,Id_Ref是d轴(直轴)电流设定值,关于交轴直轴不再介绍,大家自行百度。 Ia, Ib, Ic分别是A相、B相、C相的采样电流,是可以直接通过AD采样得到的,通常直接采样其中两相,利用公式Ia+Ib+Ic=0计算得到第三相,电角度θ可以通过实时读取磁编码器的值计算得到。 在得到三相电流和电角度后,即可以进行电流环的执行了:三相电流Ia, Ib, Ic经过Clark变换得到Iα, Iβ;然后经过Park变换得到Iq, Id;然后分别与他们的设定值Iq_Ref, Id_Ref计算误差值;然后分别将q轴电流误差值代入q轴电流PI环计算得到Vq,将d轴电流误差值代入d轴电流PI环计算得到Vd;然后对Vq, Vd进行反Park变换得到Vα, Vβ;然后经过SVPWM算法得到Va, Vb, Vc,最后输入到电机三相上。这样就完成了一次电流环的控制。

机器人学导论学习笔记(一):第二章

馋奶兔 提交于 2019-11-26 07:48:01
空间描述概述 机器人操作的定义是指通过某种机构使零件和工具在空间运动,这自然就需要表达零件、工具以及机构本身的位置和姿态。为了定义和运用表达位姿的数学量,我们必须定义坐标系并给出表达的规则。 我们采用这样的一个体系,即存在着一个世界坐标系,我们所定义的位姿都是参照世界坐标系或者由世界坐标系定义的笛卡尔坐标系。 位置描述 一旦建立了坐标系,我们就能用一个3×1的位置矢量对坐标系中的任意点进行定位。因为经常在世界坐标系中还要定义许多坐标系,因此必须在位置矢量上附加一信息,表明是在哪一个坐标系中定义的。 如图中的点 A P用一个矢量表示为: A P = [ p x p y p z ] T ,其中 p x 、p y 和p z 分别为该矢量在X轴、Y轴和Z轴方向上的投影的长度。 姿态描述 单靠位置矢量还不足以准确描述机械手的位置,还要有关于其姿态的描述才能完全确定其位置。为了描述物体的姿态,需在物体上固定一个坐标系,并给出该坐标系相对于参考坐标系的表达。 如图中的坐标系{B}以某种方式固定在机械手上,则{B}相对于参考坐标系{A}的表达可描述该机械手的姿态。 用X B 、Y B 和Z B 表示坐标系{B}主轴方向的单位矢量,它们在参考坐标系{A}上的表达为: A X B 、 A Y B 和 A Z B ,则将这三个单位矢量按顺序组成一个3×3的旋转矩阵,并用 B A R ^A_BR B A