kera 学习-线性回归
园子里头看到了一些最基础的 keras 入门指导, 用一层网络,可以训练一个简单的线性回归模型。 自己学习了一下,按照教程走下来,结果不尽如人意,下面是具体的过程。 第一步: 生成随机数据,绘出散点图 import numpy as np from keras.models import Sequential from keras.layers import Dense import matplotlib.pyplot as plt # 生产随机数据 np.random.seed(123) # 指定种子,使得每次生成的随机数保持一致 x = np.linspace(-1,1,200) # 生成一个长度为 200 的 list,数值大小在 [-1,1] 之间 np.random.shuffle(x) # 随机排列传入 list y = 0.5 * x + 2 + np.random.normal(0, 0.05, (200,)) # 添加正态分布的偏差值 #测试数据 与 训练数据 x_train, y_train = x[:160], y[:160] x_test, y_test = x[160:], y[160:0] # 绘出散点图: plt.scatter(x,y) plt.show() 散点图如下: # 创建模型 model = Sequential() # 添加全连接层