Keras学习手册(一),开篇-使用 Python3 的Deep Learning 库
感谢作者分享- http://bjbsair.com/2020-04-07/tech-info/30656.html === 你恰好发现了 Keras。 Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验。能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。 如果你在以下情况下需要深度学习库,请使用 Keras: 允许简单而快速的原型设计(由于用户友好,高度模块化,可扩展性)。 同时支持卷积神经网络和循环神经网络,以及两者的组合。 在 CPU 和 GPU 上无缝运行。 查看文档,请访问 Keras.io。 Keras 兼容的 Python 版本: Python 2.7-3.6 。 指导原则 用户友好。 Keras 是为人类而不是为机器设计的 API。它把用户体验放在首要和中心位置。Keras 遵循减少认知困难的最佳实践:它提供一致且简单的 API,将常见用例所需的用户操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 模块化。 模型被理解为由独立的、完全可配置的模块构成的序列或图。这些模块可以以尽可能少的限制组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函数、正则化方法,它们都是可以结合起来构建新模型的模块。 易扩展性