numba

Python的3个主要缺点及其解决方案,80%的人都不会

∥☆過路亽.° 提交于 2020-08-12 04:27:13
Python 问世至今已经三十年左右了,但其仅在过去几年人气迅速飙升超过了除 java 和 C 以外的其他语言。总的来说,Python 已经成为教学、学习编程和软件开发的优秀起点,而且其可以成为任何技术栈中有价值的一部分。 另外大家要注意: 光理论是不够的。这里顺便总大家一套2020最新python入门到高级项目实战视频教程,可以去小编的Python交流.裙 :七衣衣九七七巴而五(数字的谐音)转换下可以找到了,还可以跟老司机交流讨教! 不幸的是,这样的流行程度也会暴露 Python 的缺点,最显著且众所周知的缺点是这三个:运算性能、打包及可执行程序的生成、项目管理 虽然这三个缺点都不是非常致命,但是和其他处于上升通道的语言如 Julia、Nim、Rust 和 Go 相比,Python 的劣势将越来越明显。 下面给大家讲讲 Python 程序员面临的这三个缺点,以及 Python 与其第三方 工具 开发人员提出的解决这些缺点的方法。 缺点一:Python 多线程和速度 Python 整体性能缓慢,有限的线程和多处理能力是其未来发展的主要障碍。 Python 长期以来一直重视编程的易用性而不是运行时的速度。当通过使用 C 或 C++ 编写的高速外部 库 (如 Numpy 和 Numba)在 Python 中完成如此多的性能密集型任务时,你会发现 Python

学习python最离不开的库,你都知道哪个?

懵懂的女人 提交于 2020-08-07 01:25:58
  python是很多人都喜欢学习的编程语言,语法简单、清晰、优雅、通俗易懂,对初学者非常友好,对于没有任何基础的人想要转行编程,都会选择python。更重要的是python具有丰富的第三方库,python帮助我们完成各种各样的事情。那么你知道python的哪些库呢?一起来看看吧。   Arrow:Arrow是非常方便和智能的,可以轻松地定位几个小时的时间,轻松转换时区的时间,对于一个小时前,2小时之内这样人性化的信息也能解读。   Behold:调试程序对于程序员很重要,对于脚本语言,很多人习惯用print进行调试,而对于大项目来说,它远远不够,人人都想要轻松,调试方便,那么Behold是非常合适的选择。   Click:对于命令行API进行大量封装,你可以轻松开发出属于自己的CLI命令集。终端的颜色,环境变量信息,通过Click都可以轻松进行获取和改变。   Numba:从事数据方面的工作,Numba是不能缺少的。通过高速C库包装python接口中来工作, Numba无疑 是最方便,它允许使用装饰器选择性地加速Python函数。   Pillow:图像处理,调试画面颜色、饱和度、调整图像尺寸、裁剪图像等,这些都可以通过python来完成,使用的就是Pillow。   Pygame:专门为了游戏开发推出的python库,你可以轻松的开发出一个游戏,封装了几乎常用游戏框架的所有功能

float16/32/64对神经网络计算的影响

左心房为你撑大大i 提交于 2020-08-06 12:24:22
https://www.maixj.net/ict/float16-32-64-19912 float16/32/64对神经网络计算的影响 神经网络的计算,或者说深度学习的计算,全都是浮点数。浮点数的类型分16/32/64(128位的不再考虑范围内,numpy和python最大只到float64),选择哪一种浮点数类型,对神经网络的计算有不同的影响。以下是近期的学习总结: (1)目前业界深度学习的标准是 BF16,一种16位的浮点数 ,据说Google的TPU已经支持,未来Intel的芯片也会支持; (2)我们在一般计算上的, 通过numpy得到的16位浮点数,是FP16,不是BF16 ; FP16是IEEE754-2008的标准 ;这两个标准,在能够表示的数值的范围上有区别; (3)对于内存的影响:float64占用的内存是float32的两倍,是float16的4倍;比如对于CIFAR10数据集,如果采用float64来表示,需要60000*32*32*3*8/1024**3=1.4G,光把数据集调入内存就需要1.4G;如果采用float32,只需要0.7G,如果采用float16,只需要0.35G左右;占用内存的多少,会对系统运行效率有严重影响;(因此数据集文件都是采用uint8来存在数据,保持文件最小) (4)采用numpy的float16,即FP16,来计算深度学习

numba-safe version of itertools.combinations?

谁说胖子不能爱 提交于 2020-08-03 03:18:06
问题 I have some code which loops through a large set of itertools.combinations , which is now a performance bottleneck. I'm trying to turn to numba 's @jit(nopython=True) to speed it up, but I'm running into some issues. First, it seems numba can't handle itertools.combinations itself, per this small example: import itertools import numpy as np from numba import jit arr = [1, 2, 3] c = 2 @jit(nopython=True) def using_it(arr, c): return itertools.combinations(arr, c) for i in using_it(arr, c):

understanding this race condition in numba parallelization

ぃ、小莉子 提交于 2020-08-02 05:27:04
问题 There is an example in Numba doc about parallel race condition import numba as nb import numpy as np @nb.njit(parallel=True) def prange_wrong_result(x): n = x.shape[0] y = np.zeros(4) for i in nb.prange(n): y[:]+= x[i] return y I have ran it, and it indeed outputs abnormal result like prange_wrong_result(np.ones(10000)) #array([5264., 5273., 5231., 5234.]) then I tried to change the loop into import numba as nb import numpy as np @nb.njit(parallel=True) def prange_wrong_result(x): n = x.shape

How to efficiently create a tuple of length N with code that will compile with numba?

别说谁变了你拦得住时间么 提交于 2020-07-23 06:45:29
问题 I timed two ways to create a tuple of length N. This is very fast: def createTuple(): for _ in range(100000): tuplex = (0,) * 1000 CPU times: user 439 ms, sys: 1.01 ms, total: 440 ms Wall time: 442 ms This is very fast, but doesn't compile with Numba: Invalid use of Function(<built-in function mul>) with argument(s) of type(s): (UniTuple(Literal[int](0) x 1), int64) This is much slower: def createTuple(): for _ in range(100000): tuplex = tuple(0 for _ in range(1000)) %time createTuple() CPU

How to efficiently create a tuple of length N with code that will compile with numba?

独自空忆成欢 提交于 2020-07-23 06:43:22
问题 I timed two ways to create a tuple of length N. This is very fast: def createTuple(): for _ in range(100000): tuplex = (0,) * 1000 CPU times: user 439 ms, sys: 1.01 ms, total: 440 ms Wall time: 442 ms This is very fast, but doesn't compile with Numba: Invalid use of Function(<built-in function mul>) with argument(s) of type(s): (UniTuple(Literal[int](0) x 1), int64) This is much slower: def createTuple(): for _ in range(100000): tuplex = tuple(0 for _ in range(1000)) %time createTuple() CPU

Why Numba doesn't improve this recursive function

核能气质少年 提交于 2020-07-03 12:56:11
问题 I have an array of true/false values with a very simple structure: # the real array has hundreds of thousands of items positions = np.array([True, False, False, False, True, True, True, True, False, False, False], dtype=np.bool) I want to traverse this array and output the places where changes happen (true becomes false or the contrary). For this purpose, I've put together two different approaches: a recursive binary search (see if all values are the same, if not, split in two, then recurse)

How to import Pyculib in Pycharm?

こ雲淡風輕ζ 提交于 2020-06-29 03:48:35
问题 I want to use pyculib.fft in a pycharm project, to be precise inside a numba.njit decorated function. Someone on Stackoverflow suggested to me to use it, since I need to find a way to use an fft function inside a numba.njit decorated function. But I can't get pyculib to work. I have tried using a Python 3.7 interpreter as well as an Anaconda interpreter. In both cases pyculib 1.0.1 is installed, which is the only version available in pycharm. With Python interpreter: import pyculib Output: C:

How to pass data bigger than the VRAM size into the GPU?

一世执手 提交于 2020-06-26 15:53:31
问题 I am trying to pass more data into my GPU than I have VRAM, which results in the following error. CudaAPIError: Call to cuMemAlloc results in CUDA_ERROR_OUT_OF_MEMORY I created this code to recreate the problem: from numba import cuda import numpy as np @cuda.jit() def addingNumbers (big_array, big_array2, save_array): i = cuda.grid(1) if i < big_array.shape[0]: for j in range (big_array.shape[1]): save_array[i][j] = big_array[i][j] * big_array2[i][j] big_array = np.random.random_sample(