风格迁移算法
最近推导了一些机器学习入门的算法,老是搞那些数学知识,搞的自己都没信心和新区了。今天学着玩点有趣好玩的。 图像的艺术风格迁移算法,算是一个简单有趣,而且一般人都能看得到效果的算法。图像艺术风格迁移,简单的理解,就是找一个照片作为内容,然后把这个照片换成梵高或者毕加索等制定的风格。关于 图像艺术风格迁移 的一些历史和知识,大家可以看看这篇文章: 图像风格迁移(Neural Style)简史 。 思路 风格迁移的大概思路是:我们需要准备两张图片。一张是我们将要输出的内容图片,另外一张是我们需要模仿的风格图片。我们需要输出一张图片,让输出的这张图片的内容和内容图片相近,让输出图片的风格和风格图片的风格相近。 <br /> 内容最接近的算法 内容最接近,相对来说比较简单。简单的理解可以对比每个图片的像素,然后计算他们的差距。也可以是计算CNN中间某个卷积层得到的特征值之间的距离。 <br /> 我经过调试发现,如果内容图层取得太靠前,效果不太好。因为内容特征越靠前,相当于对比的越细腻,而风格迁移要得到的效果是宏观上更像内容图片,细节上用风格表现,这样效果最好。 风格最接近的算法 风格的比较是最难理解的。要理解风格比较的算法,需要了解一个名词叫做格拉姆矩阵。听常博士说这个知识属于矩阵分析里面的内容。我对这方面没系统学习过,不太懂。但是我能理解到的层次是:你给定N个卷积核,然后可以得到N个矩阵