使用Python进行描述性统计
目录 1 描述性统计是什么? 2 使用NumPy和SciPy进行数值分析 2.1 基本概念 2.2 中心位置(均值、中位数、众数) 2.3 发散程度(极差,方差、标准差、变异系数) 2.4 偏差程度(z-分数) 2.5 相关程度(协方差,相关系数) 2.6 回顾 3 使用Matplotlib进行图分析 3.1 基本概念 3.2 频数分析 3.2.1 定性分析(柱状图、饼形图) 3.2.2 定量分析(直方图、累积曲线) 3.3 关系分析(散点图) 3.4 探索分析(箱形图) 3.5 回顾 4 总结 5 参考资料 1 描述性统计是什么? 描述性统计是借助图表或者总结性的数值来描述数据的统计手段。数据挖掘工作的数据分析阶段, 我们可借助描述性统计来描绘或总结数据的基本情况 ,一来可以梳理自己的思维,二来可以更好地向他人展示数据分析结果。数值分析的过程中,我们往往要计算出数据的统计特征,用来做科学计算的NumPy和SciPy工具可以满足我们的需求。Matpotlob工具可用来绘制图,满足图分析的需求。 2 使用NumPy和SciPy进行数值分析 2.1 基本概念 与Python中原生的List类型不同, Numpy中用ndarray类型来描述一组数据 : 1 from numpy import array 2 from