Cython: Should I use np.float_t rather than double for typed memory views
问题 Concerning memoryviews in cython, is there any advantage of typing a view with NumPy types such as np.float_t instead of simply do double if I'm working with numpy float arrays? And should I type the cdef then the same way, doing e. g. ctypedef np.float64_t np_float_t ... @cython.profile(False) @cython.wraparound(False) @cython.boundscheck(False) cdef np_float_t mean_1d(np_float_t [:] v) nogil: cdef unsigned int n = v.shape[0] cdef np_float_t n_sum = 0. cdef Py_ssize_t i for i in range(n): n