mac地址表

IP技术 -- 11 VXLAN之二

蓝咒 提交于 2020-02-09 01:42:40
在数据中心大二层网络技术中有提到,Overlay技术是目前大二层网络最热点的技术,可适用于目前整个数据中心,甚至跨数据中心的大二层组网。 随着数据中心租户规模的越来越大,虚拟机的数量也大幅增加,此时传统二层网路的隔离技术VLAN因其Tag域只有12bit,仅能划分出4096个虚拟二层网络,已经无法满足大二层网络中标识大量用户集的需求,同时,为了使数据中心的资源得到灵活的调配,需要支持虚拟机跨分区,甚至跨数据中心的灵活迁移,这时基于VLAN的传统二层网络很难做到 虚拟机在迁移前后的IP和MAC地址不能改变 。 为了帮助数据中心完成上述挑战,VXLAN(Virtual eXtensible Local Area Network)技术应用而生,是一种在三层网络上构造虚拟化二层网络的技术。 首先,VXLAN引入了类似VLAN ID的用户标识,称为VXLAN Network Identifier(VNI),它由24bit组成,可以构划分出1600万个相互隔离的虚拟二层网络,可以支持大二层网络的用户隔离 其次,VXLAN使用MAC in UDP的封装方式,将虚拟机发出的原始以太报文,完整的封装在VXLAN信息中,在现有承载网络中进行透明传输,到了目的地,通过解封装VXLAN信息,将原始二层报文发给目标虚拟机,从而实现了虚拟机之间的相互通信,这样,虚拟机彻底摆脱了二三层网络的范围限制,可以跨设备

华为3COM交换机配置命令详解

旧街凉风 提交于 2020-02-03 08:08:54
1、配置文件相关命令 [Quidway]display current-configuration ;显示当前生效的配置 [Quidway]display saved-configuration ;显示flash中配置文件,即下次上电启动时所用的配置文件 <Quidway>reset saved-configuration ;檫除旧的配置文件 <Quidway>reboot ;交换机重启 <Quidway>display version ;显示系统版本信息 2、基本配置 [Quidway]super password ;修改特权用户密码 [Quidway]sysname ;交换机命名 [Quidway]interface ethernet 0/1 ;进入接口视图 [Quidway]interface vlan x ;进入接口视图 [Quidway-Vlan-interfacex]ip address 10.65.1.1 255.255.0.0 ;配置VLAN的IP地址 [Quidway]ip route-static 0.0.0.0 0.0.0.0 10.65.1.2 ;静态路由=网关 3、telnet配置 [Quidway]user-interface vty 0 4 ;进入虚拟终端 [S3026-ui-vty0-4]authentication-mode password

《网络是怎样连接的》——第三章:从网线到网络设备

▼魔方 西西 提交于 2020-01-31 15:35:31
3.1信号在网线和集线器中的传输 3.2交换机的包转发 3.3路由器的包转发操作 3.4路由器的附加功能 3.1信号在网线和集线器中传输 3.1.1每个包都是独立传输的 客户端计算机连接的局域网结构如下图所示,要经过集线器,交换机和路由器最终进入互联网。 3.1.2防止网线中的信号衰减很重要 本章是从信号流出网卡进入网线开始,网卡中的PHY(MAU)模块负责将包转换成电信号,信号通过RJ-45接口进入双绞线。如下图右侧所示。 以太网信号的本质是正负变化的电压,网卡的PHY(MAU)模块就是一个从正负两个信号端子输出信号的电路。 网卡的PHY(MAU)模块直接连接在下图右侧中的RJ-45接口,信号从这个接口的1号和2号针脚流入网线,然后,信号会通过网线到达集线器的接口,这个过程就是单纯地传输电信号而已。 但是,信号到达集线器的时候并不是跟发出去的时候一摸一样,集线器收到的信号有时候会出现衰减,如下图所示。信号在网线的传输过程中能量会逐渐损失,网线越长,信号衰减就越严重。 以太网中的信号波形是方形的,但损失能量会让信号的拐角变圆,这是因为电信号的频率越高,能量的损失率越大。信号的拐角意味着电压发生剧烈的变化,而剧烈的变化意味着这部分的信号频率很高。高频信号更容易损失能量,因此本来剧烈变化的部分就会变成缓慢的变化,拐角也就变圆了。 如果已经衰减的信号再进一步失真就会出现对0和1的误判

锐捷交换机常用命令速查

核能气质少年 提交于 2020-01-26 19:36:18
准备工作 >Enable 进入特权模式   #Exit 返回上一级操作模式   #End 返回到特权模式   #write memory 或copy running-config startup-config 保存配置文件   #del flash:config.text 删除配置文件(交换机及1700系列路由器)   #erase startup-config 删除配置文件(2500系列路由器)   #del flash:vlan.dat 删除Vlan配置信息(交换机)   #Configure terminal 进入全局配置模式   (config)# hostname switchA 配置设备名称为switchA   (config)#banner motd & 配置每日提示信息 &为终止符   (config)#enable secret level 1 0 star 配置远程登陆密码为star   (config)#enable secret level 15 0 star 配置特权密码为star   Level 1为普通用户级别,可选为1~15,15为最高权限级别;0表示密码不加密   (config)#enable services web-server 开启交换机WEB管理功能   Services 可选以下:web-server(WEB管理)、telnet

锐捷网络交换机的配置命令集

落花浮王杯 提交于 2020-01-25 18:48:04
转自: http://hi.baidu.com/bjgbd 交换机   >Enable 进入特权模式   #Exit 返回上一级操作模式   #End 返回到特权模式   #write memory 或copy running-config startup-config 保存配置文件   #del flash:config.text 删除配置文件(交换机及1700系列路由器)   #erase startup-config 删除配置文件(2500系列路由器)   #del flash:vlan.dat 删除Vlan配置信息(交换机)   #Configure terminal 进入全局配置模式   (config)# hostname switchA 配置设备名称为switchA   (config)#banner motd & 配置每日提示信息 &为终止符   (config)#enable secret level 1 0 star 配置远程登陆密码为star   (config)#enable secret level 15 0 star 配置特权密码为star   Level 1为普通用户级别,可选为1~15,15为最高权限级别;0表示密码不加密   (config)#enable services web-server 开启交换机WEB管理功能   Services

例解三层交换原理

 ̄綄美尐妖づ 提交于 2020-01-24 09:53:58
以下内容摘自笔者最新年度巨作,广受好评的—— 《深入理解计算机网络 》 书中。本书详细内容及读者评价可从这里了解: http://item.jd.com/11165825.html http://product.dangdang.com/23166396.html 另外,笔者最新的 网络设备四大金刚 在 京东网、当当网、卓越网、互动出版网 等全面热销中,详情点击: http://item.jd.com/11299332.html , http://book.dangdang.com/20130730_aife ( 购买此套装直减30元 ) 三层交换原理一直是许多读者朋友最难理解的,在日常的读者交流中也经常见到有读者提出这方面的问题,特别是三层交换与路由原理方面的区别与联系。其实三层交换机不仅同时与二层交换和路由有着密切的联系,同时与要依靠三层的ARP协议。下面具体剖析一下三层交换原理。 7.7.5 三层交换原理 二层交换机的二层数据交换一般都是使用 ASIC ( Application Specific Integrated Circuit ,专用集成电路)的硬件芯片中的 CAM 表来实现的,因为是硬件转发,所以转发性能非常高。而三层交换机的三层转发也是依靠ASIC芯片完成的(路由器的路由功能主要依靠CPU软件进行的),但其中除了二层交换用的 CAM 表外

MAC地址泛洪攻击

南楼画角 提交于 2020-01-22 08:34:42
一.MAC泛洪攻击的原理   MAC泛洪攻击主要是利用局域网交换机的mac学习和老化机制。   1.1交换机的工作流程如下:     局域网中的pc1发送数据帧给pc2,经过交换机时,交换机会在内部mac地址表中查找数据帧中的目标mac地址,如果找到就将该数据帧发送到相应的端口,如果找不到,交换机就会向入端口以外的所有端口发送此数据帧(所谓的广播,不过不是广播帧,广播帧的目的mac地址是全F)。 由此可以看到交换机实现交换功能的关键就是内部的mac地址表,那这个内部mac地址是怎么形成的呢?有什么特性呢?接下来就要讲解一下交换机的mac学习和老化机制。 1.2 交换机的mac学习机制    1. 首先咱们看一下内部mac表的结构,内部mac表都是有大小的,一般8k左右,一但mac表满了,其他mac地址就加不进来:         内部mac表是将主机的mac地址和连接到交换机上的端口号进行绑定,这样可以根据mac地址找到端口进行转发。      2.一开始的时候,没有主机连接,交换机内的mac表是空白的,这时候就要进行学习。   下面咱们幻想出一个场景: PC1这时候想往PC2发送数据,数据帧经过交换机的时候,交换机会把数据帧中的源mac地址和进入的端口号记录到mac表中; 由于一开始mac表中没有PC2的mac地址和端口绑定,所以交换机会将这个数据帧进行全网转发,就是所谓的广播

复习NA第一天

和自甴很熟 提交于 2020-01-20 00:38:27
网络是由网络连接设备通过传输介质将网络终端设备连接起来,进行资源共享,信息传输的平台。 1.OSI与TCP/IP两者的模型结构: OSI—七层参考模型 应用层:通过人机交互的界面提供各种各样的服务; 表示层:编码、解码、加密、解密 会话层:发现、建立、维持、终止会话进程 传输层:1.根据端口号来区分不同的服务     2.提供可靠的传输:确认、重传、排序、流控       TCP    UDP     3.数据分段:MSS--最大段长度   MTU--最大传输单元 网络层:根据IP地址进行逻辑寻址 数据链路层:LLC逻辑链路控制子层---为上层提供FCS校验       MAC媒介访问控制子层---根据MAC地址来进行物理寻址 物理层:定义电气电压、光学特性、接口规范 TCP/IP—实际应用模型(五层或四层) 应用层(将OSI的上三层统称为应用层) 传输层 网络层 数据链路层 物理层 2.必知点: MA—多路访问网络,在一个网段内节点的数量不限制; 点到点网络—在一个网段内只能存在两个节点; 判断网络类型的方法不是关注现下的网络拓扑结构,而是通过二层的封装技术来判断; 例如: 二层为以太网为MA 二层为HDLC/PPP为点到点 MA网络需要物理寻址; 点到点网络不需要物理寻址; MTU:最大传输单元 默认1500字节 端口号:0-65535 其中1-1023为注明端口 静态端口

ARP协议

帅比萌擦擦* 提交于 2020-01-10 19:17:15
一台pc A(192.168.1.2),想和另一台pc B(192.168.1.3)通信,pc A对自己所在局域网络内的所有主机,也包括路由器的接口喊(发送ARP查询信息):ip地址是192.168.1.3的pc的mac地址是多少,请告诉我。pc B听到了,告诉pc A我是,并把自己的IP地址和mac地址,一起发送给了pc A。 ARP协议:Address Resolution Protocol。广播请求,单播更新。 ARP的作用:通过广播的方式,找出已知的IP地址的主机的mac地址。 ARP的request和response报文的格式是一样的,用一个标识位去区分是request还response ARP发送方报文的目的mac地址是广播地址:FFFFFFFFFFFF(48个bit)。 ARP接收方,接到发送方的请求报文后,会自动把请求方的ip地址和mac地址加入到自己的mac地址表里,然后用单播的方式,使用ARP报文,给发送方发送自己的mac地址。 ping使用的是icmp协议,这个协议的报文里必须有对方的mac地址,但是当第一次ping一个ip地址时,由于不知道对方的mac地址,所以需要发送一个arp广播,也就是arp协议的报文,到mac为FFFFFFFFFFFF的广播地址。 分析首次ping一个在同一个网络内的ip地址 在ios里第一次ping(R1的f0

ping丢包故障处理方法

天大地大妈咪最大 提交于 2020-01-10 18:26:54
ping丢包故障处理方法 1. Ping丢包故障定位思路故障分析 Ping丢包是指Ping报文在网络中传输,由于各种原因(如线路过长、网络拥塞等)而产生部分Ping报文丢弃的现象。在使用Ping命令,出现Ping丢包的现象时,第一步需要确定Ping丢包的网络位置,其次是确定Ping丢包的故障原因,然后依据定位的故障原因再进行解决。 确认Ping丢包的网络位置时一般采用逐段Ping的方法,可以将Ping丢包故障最终确定在直连网段之间。 确认Ping丢包的故障原因一般采用流量统计的方法,通过流量统计可以知道丢弃报文的具体位置、判断故障原因。 导致Ping丢包的原因非常多,也非常复杂,实际故障定位中需要综合考虑各种因素。本文档针对常见Ping丢包故障分析,总结出以下几种常见故障: 物理环境故障;网络环路;ARP问题;ICMP问题。 需要注意并不是Ping丢包就一定表示网络质量差,某些情况下虽然Ping丢包,但是业务是正常的。分析Ping丢包时注意以下两点: 当设备对报文进行硬件转发,速度非常快,就不会丢包。例如,Ping设备端口下挂的电脑。当报文需要CPU进行处理时,CPU繁忙就会丢包。例如:Ping设备上的IP地址。 为了防止网络×××对设备造成影响,设备具有CPU保护功能,对于超过CPCAR(Control Plane Committed Access Rate)值的ARP