斐波那契博弈(Fibonacci Nim)
问题: 有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下: 1)先手不能在第一次把所有的石子取完,至少取1颗; 2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍。 约定取走最后一个石子的人为赢家,求必败态。 结论: 当n为Fibonacci数的时候,先手必败。 f[i]:1,2,3,5,8,13,21,34,55,89…… 证明: 数学归纳法: 为了方便,我们将n记为f[i]。 1、当i=2时,先手只能取1颗,显然必败,结论成立。 2、假设当i<=k时,结论成立。 则当i=k+1时,f[i] = f[k]+f[k-1]。 则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。 (一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1]) 对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。 如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。 我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,对两值作差后不难得出,后者大。 所以我们得到,x<1/2*f[k]。 即后手取完k