51Nod 1070 Bash游戏 V4(斐波那契博弈)

别说谁变了你拦得住时间么 提交于 2020-02-28 04:54:27

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070

题意:

 

思路:

这个是斐波那契博弈,http://blog.csdn.net/acm_cxlove/article/details/7835016,关于斐波那契博弈的介绍,可以看看这篇博客。以下的内容便是转自这篇博客。

1、当i=2时,先手只能取1颗,显然必败,结论成立。

2、假设当i<=k时,结论成立。

     则当i=k+1时,f[i] = f[k]+f[k-1]。

     则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。

    (一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])

     对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。

     如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。

     我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,由数学归纳法不难得出,后者大。

     所以我们得到,x<1/2*f[k]。

     即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。

     即i=k+1时,结论依然成立。

对于不是FIB数,首先进行分解。

 

分解的时候,要取尽量大的Fibonacci数。

比如分解85:85在55和89之间,于是可以写成85=55+30,然后继续分解30,30在21和34之间,所以可以写成30=21+9,

依此类推,最后分解成85=55+21+8+1。

则我们可以把n写成  n = f[a1]+f[a2]+……+f[ap]。(a1>a2>……>ap)

我们令先手先取完f[ap],即最小的这一堆。由于各个f之间不连续,则a(p-1) > ap  + 1,则有f[a(p-1)] > 2*f[ap]。即后手只能取f[a(p-1)]这一堆,且不能一次取完。

此时后手相当于面临这个子游戏(只有f[a(p-1)]这一堆石子,且后手先取)的必败态,即先手一定可以取到这一堆的最后一颗石子。

同理可知,对于以后的每一堆,先手都可以取到这一堆的最后一颗石子,从而获得游戏的胜利。

 

 1 #include<iostream>
 2 #include<algorithm>
 3 #include<cstring>
 4 #include<cstdio>
 5 #include<vector>
 6 #include<queue>
 7 #include<cmath>
 8 #include<map>
 9 using namespace std;
10 
11 const int maxn=1e9+5;
12 
13 int n;
14 int c[4];
15 map<int,int> num;
16 
17 void init()
18 {
19     c[1]=1;
20     c[2]=2;
21     num[1]=1;
22     num[2]=1;
23     while(c[2]<=maxn)
24     {
25         c[3]=c[1]+c[2];
26         num[c[3]]=1;
27         c[1]=c[2];
28         c[2]=c[3];
29     }
30 }
31 
32 int main()
33 {
34     //freopen("D:\\input.txt","r",stdin);
35     init();
36     int T;
37     scanf("%d",&T);
38     while(T--)
39     {
40         scanf("%d",&n);
41         if(num[n])  puts("B");
42         else puts("A");
43     }
44 }

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!