知识图谱研究进展
在原文 《知识图谱研究进展》 基础上上做了相应的调整和补充 本文首先简要回顾知识图谱的历史,探讨知识图谱研究的意义。其次,介绍知识图谱构建的关键技术,包括实体关系识别技术、知识融合技术、实体链接技术和知识推理技术等。然后,给出现有开放的知识图谱数据集的介绍。最后,给出知识图谱在情报分析中的应用案例。 — 漆桂林、高桓、吴天星 东南大学计算机科学与工程学院 本文节选自《情报工程》2017 年第 1 期,知识图谱专题稿件。 1 知识图谱构建技术 本节首先给出知识图谱的技术地图,然后介绍知识图谱构建的关键技术,包括关系抽取技术、知识融合技术、实体链接技术和知识推理技术。 1.1 知识图谱技术地图 构建知识图谱的主要目的是获取大量的、让计算机可读的知识。在互联网飞速发展的今天,知识大量存在于非结构化的文本数据、大量半结构化的表格和网页以及生产系统的结构化数据中。为了阐述如何构建知识图谱,本文给出了构建知识图谱的技术地图,该技术地图如图1所示。 整个技术图主要分为三个部分,第一个部分是知识获取,主要阐述如何从非结构化、半结构化、以及结构化数据中获取知识。第二部是数据融合,主要阐述如何将不同数据源获取的知识进行融合构建数据之间的关联。第三部分是知识计算及应用,这一部分关注的是基于知识图谱计算功能以及基于知识图谱的应用。 1.1.1 知识获取 在处理非结构化数据方面