gil

网络编程之多线程——GIL全局解释器锁

a 夏天 提交于 2019-11-30 12:55:43
网络编程之多线程——GIL全局解释器锁 一、引子 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.) 结论:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势 首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行

How can I check whether a thread currently holds the GIL?

穿精又带淫゛_ 提交于 2019-11-30 12:14:20
I tried to find a function that tells me whether the current thread has the global interpreter lock or not. The Python/C-API documentation does not seem to contain such a function. My current solution is to just acquire the lock using PyGILState_Ensure() before releasing it using PyEval_SaveThread to not try releasing a lock that wasn't acquired by the current thread. (btw. what does "issues a fatal error" mean?) Background of this question: I have a multithreaded application which embeds Python. If a thread is closed without releasing the lock (which might occur due to crashes), other threads

When are Python threads fast?

﹥>﹥吖頭↗ 提交于 2019-11-30 08:58:33
We're all aware of the horrors of the GIL , and I've seen a lot of discussion about the right time to use the multiprocessing module, but I still don't feel that I have a good intuition about when threading in Python (focusing mainly on CPython) is the right answer. What are instances in which the GIL is not a significant bottleneck? What are the types of use cases where threading is the most appropriate answer? Threading really only makes sense if you have a lot of blocking I/O going on. If that's the case, then some threads can sleep while other threads work. If threads are CPU-bound, you're

Why does this Python script run 4x slower on multiple cores than on a single core

萝らか妹 提交于 2019-11-30 08:36:11
问题 I'm trying to understand how CPython's GIL works and what are the differences between GIL in CPython 2.7.x and CPython 3.4.x. I'm using this code for benchmarking: from __future__ import print_function import argparse import resource import sys import threading import time def countdown(n): while n > 0: n -= 1 def get_time(): stats = resource.getrusage(resource.RUSAGE_SELF) total_cpu_time = stats.ru_utime + stats.ru_stime return time.time(), total_cpu_time, stats.ru_utime, stats.ru_stime def

117 GIL全局解释器锁

随声附和 提交于 2019-11-30 06:32:30
一、GIL全局解释器锁 cpython中自带的GIL全局解释器,GIL本身就是一把互斥锁 重点: 因为有了GIL全局解释器锁,导致了在同一进程的同一时刻只有一个线程在执行,无法利用多核优势 其实就算我们在程序中写了一个线程的并行操作,实际上GIL会因为垃圾回收机制的问题,操作系统调度的问题,会把并行的线程还是变成了串行,这正是这个GIL全局解释器锁导致了同一进程的同一时刻只有一个线程在运行, Python代码的执行由Python虚拟机(也叫解释器主循环)来控制。 Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行。 虽然 Python 解释器中可以“运行”多个线程,但在任意时刻只有一个线程在解释器中运行。 对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。 在多线程环境中,Python 虚拟机按以下方式执行: 设置 GIL; 切换到一个线程去运行; 运行指定数量的字节码指令或者线程主动让出控制(可以调用 time.sleep(0)); 把线程设置为睡眠状态; 解锁 GIL; 再次重复以上所有步骤。 在调用外部代码(如 C/C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于在这期间没有Python的字节码被运行,所以不会做线程切换)编写扩展的程序员可以主动解锁GIL。 二

Is concurrent.futures a medicine of the GIL?

人盡茶涼 提交于 2019-11-30 05:19:16
I was just searching about this new implementation, and i use python 2.7, i must install this , so if i use it, i'll forget the word GIL on CPython? No, concurrent.futures has almost nothing whatsoever to do with the GIL. Using processes instead of threads is medicine for the GIL. (Of course, like all medicine, it has side effects. But it works.) The futures module just gives you a simpler way to schedule and wait on tasks than using threading or multiprocessing directly. And it has the added advantage that you can swap between a thread pool and a process pool (and maybe even a greenlet loop,

Python threading and GIL

被刻印的时光 ゝ 提交于 2019-11-30 05:17:18
问题 I was reading about the GIL and it never really specified if this includes the main thread or not (i assume so). Reason I ask is because I have a program with threads setup that modify a dictionary. The main thread adds/deletes based on player input while a thread loops the data updating and changing data. However in some cases a thread may iterate over the dictionary keys where one could delete them. If there is a so called GIL and they are run sequentially, why am I getting dict changed

Python‘最难’的问题——GIL问题

泪湿孤枕 提交于 2019-11-30 04:14:05
目录 一、什么是GIL GIL(解释器全局锁) 为什么加锁 加锁的作用 GIL官方给出的解释 二、GIL的影响 GIL的设计缺陷 为什么GIL有这个缺陷而不改进? 为什么改不了 有了GIL的存在,python有这两个特点 如何解决GIL锁带来的问题 一、什么是GIL GIL(解释器全局锁) 从名字上看能告诉我们很多东西,很显然,这是一个加在解释器上的全局(从解释器的角度看)锁(从互斥或者类似角度看)。 首先来看回顾一下什么是锁: 为什么加锁 由于多线程共享进程的资源和地址空间,因此,在对这些公共资源进行操作时,为了防止这些公共资源出现异常的结果,必须考虑线程的同步和互斥问题。 加锁的作用 1、用于非线程安全,2、控制一段代码,确保其不产生调度混乱。 GIL官方给出的解释 In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (However, since the GIL exists,

GIL

只谈情不闲聊 提交于 2019-11-30 01:08:10
GIL GIL介绍 在Cpython解释器中有一把GIL锁(全局解释器锁),GIL锁本质是一把互斥锁 导致了同一进程下,同一时间只能运行一个线程,无法利用多核优势 同一个进程下多个线程只能实现并发不能实现并行 为什么要有GIL? 因为Cpython自带的垃圾回收机制不是线程安全的,所有要有GIL锁 案例分析 我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是: 方案一:开启四个进程 方案二:一个进程下,开启四个线程 #计算密集型 推荐使用多进程 #每个都要计算10s 多线程 在同一时刻只有一个线程会被执行,也就意味着每个10s都不能省,分开每个都要计算10,共计40.ns 多进程 可以并行的执行多个线程,10s+开启进程的时间 #io密集型 推荐多线程 #4个任务每个人物90%大部分时间都在io #每个任务io10s 0.5s 多线程 可以实现并发,每个线程io的时间不咋占用cpu, 10s + 4个任务的计算时间 多进程 可以实现并行,10s+1个任务执行的时间+开进程的时间 来源: https://www.cnblogs.com/aden668/p/11543027.html

GIL问题

女生的网名这么多〃 提交于 2019-11-30 00:50:01
目录 Python‘最难’的问题——GIL问题 一、什么是GIL GIL(解释器全局锁) 为什么加锁 加锁的作用 GIL官方给出的解释 二、GIL的影响 GIL的设计缺陷 为什么GIL有这个缺陷而不改进? 为什么改不了 有了GIL的存在,python有这两个特点 如何解决GIL锁带来的问题 Python‘最难’的问题——GIL问题 一、什么是GIL GIL(解释器全局锁) 从名字上看能告诉我们很多东西,很显然,这是一个加在解释器上的全局(从解释器的角度看)锁(从互斥或者类似角度看)。 首先来看回顾一下什么是锁: 为什么加锁 由于多线程共享进程的资源和地址空间,因此,在对这些公共资源进行操作时,为了防止这些公共资源出现异常的结果,必须考虑线程的同步和互斥问题。 加锁的作用 1、用于非线程安全,2、控制一段代码,确保其不产生调度混乱。 GIL官方给出的解释 In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread