emc

在单片机设计过程中,解决EMC的软硬件处理方法

对着背影说爱祢 提交于 2019-12-18 11:01:12
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 对于一个电子工程师来说,在单片机的电路设计中电磁干扰不仅关系了单片机在控制在中的能力和准确度,还关系到企业在行业中的竞争。对电磁干扰的设计本文主要从硬件和软件方面进行设计处理,下面就是从单片机的PCB设计到软件处理方面来介绍对电磁兼容性的处理。 一、影响EMC的因数 1.电压 电源电压越高,意味着电压振幅越大,发射就更多,而低电源电压影响敏感度。 2.频率 高频产生更多的发射,周期性信号产生更多的发射。在高频单片机系统中,当器件开关时产生电流尖峰信号;在模拟系统中,当负载电流变化时产生电流尖峰信号。 3.接地 在所有EMC题目中,主要题目是不适当的接地引起的。有三种信号接地方法:单点、多点和混合。在频率低于1MHz时,可采用单点接地方法,但不适宜高频;在高频应用中,最好采用多点接地。混合接地是低频用单点接地,而高频用多点接地的方法。地线布局是关键,高频数字电路和低电平模拟电路的接地电路尽不能混合。 4.PCB设计 适当的印刷电路板(PCB)布线对防止EMI是至关重要的。 5.电源往耦 当器件开关时,在电源线上会产生瞬态电流,必须衰减和滤掉这些瞬态电流。来自高di/dt源的瞬态电流导致地和线迹“发射”电压,高di/dt产生大范围的高频电流,激励部件和线缆辐射。流经导线的电流变化和电感会导致压降

频谱仪在EMC整改中的应用

╄→гoц情女王★ 提交于 2019-12-17 15:07:53
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 一 前言 频谱分析仪是电磁干扰(EMI)的测试、诊断和故障检修中用途最广的一种工具。频谱分析仪对于一个电磁兼容(EMC)工程师来说就像一位数字电路设计工程师手中的逻辑分析仪一样重要。频谱分析仪的宽频率范围、带宽可选性和宽范围扫描CRT显示使得它在几乎每一个EMC测试应用中都可大显身手。 下图为常见的频谱分析仪: 二 频谱仪的测试功能介绍 频谱分析仪在EMC整改中可以观测信号的频谱,信号的功率,测试系统的杂散,谐波,交调失真功能。 1、测量信号的频率与功率 下图为信号源发出一单载波信号后,频谱仪的显示,通过MARK——PEAK,操作可以看到信号频率为74.35MHz,功率为3.64dBm。 2、交调失真测试 下图为信号交调失真测试图,通过mark-DELT标注功能可以测试信号与交调信号功率差(dB) 3、谐波测试 频谱仪可以测试被测信号的各次谐波,可以用频谱仪自带的频谱测试功能,MEASURE-harmonic测试,也可以通过测试信号的频率f,然后改变频谱仪的中心频率到2f,3f….然后PEAK一下,测试各次谐波的功率。 4、测量调制信号的带宽 频谱仪可以测试信号的带宽,可以测试3dB带宽,也可以测试99%信号能量带宽 。下图为99%信号能量带宽。 5、峰均比测试 频谱仪测试中,还有一个功能为峰均比测试(CCDF

智能电器控制板EMC仿真与优化

只愿长相守 提交于 2019-12-17 15:07:02
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 为了尽早地在产品设计阶段解决电磁兼容问题,设计师需要进行基于理论分析和协作设计的EMC仿真。本文采用Ansoft SIwave软件,仿真分析了PCB中高频谐波干扰对智能电器控制板电磁兼容性产生的影响。最后,基于仿真结果对PCB的设计进行了优化。经实验证明,控制板的EMC问题得到了有效的解决。 电磁兼容性反映了电子或电气设备/系统在其电磁环境中符合要求地运行且不对其环境中其它任何设备产生无法忍受的电磁干扰的能力。智能电器是传统电器与电子技术结合的产物,目前,以智能电器为基础的大型电力设备的在线监测,对于电力系统的安全运行更是起着至关重要的作用。 由于智能电器经常运行于高电压、大电流的现场环境中,与被保护和监控的设备、系统处于同一个电磁空间,以微型计算机为核心的监控单元必然会受到来自于电力系统的不同能量、不同频率的电磁干扰,因此,智能电器的电磁兼容问题集中在智能电器的控制单元上。 智能电器的电磁兼容性能直接关系到智能电器的可靠工作,进而对电力系统的安全运行造成影响。与智能电器功能与原理的研究相比较,EMC问题的研究显得严重不足:在产品的设计过程中,不能针对EMC问题系统地考虑元件性能的选配和系统结构的整合;某个EMC问题的解决经常要经过反复的试验和修改,并且往往不能对出现EMC问题的范围进行准确的定位

EMC工程师应对ESD的策略

柔情痞子 提交于 2019-12-16 00:55:06
ESD试验 作为EMC测试标准的一项基本测试项目,如果产品的前期设计考虑不足,加上经验不够的话,往往会让人焦头烂额。一般中小型企业,如果没有专门的,往往这项工作就必须由硬件工程师来承担。对于整机来说,ESD抗扰能力不仅仅来自芯片的ESD耐压,PCB的布局布线,甚至与工艺结构也有密切关系。 常见的ESD试验等级为接触放电:1级——2KV;2级——4KV;3级——6KV;4级——8KV;空气放电:1级——2KV;2级——4KV;3级——8KV;4级——15KV。本人所处的医疗电子行业,产品的ESD试验一般要达到第3等级,即接触6KV,空气8KV。在整机ESD试验方面,本人也搞过了几台不同型号的产品,也算搞出了一点眉目, 总体的解决思想是把静电流向地 ,现总结如下。 1. 电源加TVS管 特别是对于裸露在外的一些接口,比如USB、VGA、DC、SD卡等,对这些接口进行接触放电时,静电很容易就会“串”到电源线上,静电由本来的共模变成了差模,此时电源上就会产生一个很高的尖峰,很多芯片都承受不了,发生死机,复位等问题。对于电源VCC的ESD保护,可以并接TVS管来解决。TVS管与稳压二极管很相似,都有一个额定的电压,不同的是它的响应速度特别快,对静电有很好的泄放作用。例如对于USB接口(见图1.1、图1.2),VCC和外壳地之间并接5V的TVS管。相当于把电源和地钳位在5V以内

EMC 5400服务器raid阵列瘫痪数据恢复成功案例

你。 提交于 2019-12-14 21:16:46
一、服务器数据恢复背景 北京某政府部门的一台EMC 5400服务器由于raid阵列损坏导致服务器崩溃,急需进行服务器数据恢复,由于用户服务器数据涉密,需要上门恢复。 二、服务器数据恢复检测 服务器数据恢复工程师携带相关设备到客户现场进行数据检测,发现服务器瘫痪的原因是由于raid阵列中某些硬盘掉线导致的,对所有磁盘进行物理检测后没有发现物理故障,也没有坏道。随后工程师借助数据恢复软件将故障服务器(EMC 5400)中的所有磁盘镜像到我公司数据恢复服务平台上,以备后期数据恢复使用。 三、EMC 5400服务器数据恢复 1、分析服务器RAID组的结构 EMC 5400服务器的LUN全部基于RAID阵列组,所以要恢复服务器数据首先需要分析服务器底层RAID信息,然后根据分析的信息重构原始的RAID组。服务器数据恢复工程师对raid阵列进行分析后发现服务器中有两块硬盘离线,由于6号盘和10号盘都属于Hot Spare,但在服务器发生故障时6号Hot Spare替换了掉线的5号硬盘,10号盘因为未知原因未启用。所以服务器虽然成功激活了6号盘的Hot Spare,但由于在RAID5磁盘阵列中仍然缺失一块硬盘,数据没有同步到6号硬盘中。服务器数据恢复工程师继续分析所有其他硬盘,得出数据在硬盘中分布的规律,RAID条带的大小,以及每块磁盘的顺序。 2、重组raid分析掉线盘顺序

EMC测试不合格,应该这样整改

徘徊边缘 提交于 2019-12-13 12:04:18
EMC主要是通过测试产品在电磁方面的干扰大小和抗干扰能力的综合评定,是产品在质量安全认证重要的指标之一。很多产品在做产品安全认证时都会遇到产品测试不合格的情况,尤其是在电磁兼容测试(即EMC测试)出错频率更是普遍。当产品一旦测试不合格,那么随之而来的肯定是EMC整改通知书。在EMC整改过程中很多管理人和技术人员并不太明白该从何处入手,今天我们就来分析EMC整改常遇到的问题和一些整改建议。 首先我们来从EMC测试项目构成说起,EMC主要包含两大项:EMI(干扰)和EMS(产品抗干扰和敏感度) 。当然这两大项中又包括许多小项目,EMI主要测试项:RE(产品辐射,发射)、CE(产品传导干扰)、Harmonic(谐波)、Ficker(闪烁)。EMS主要测试项:ESD(产品静电)、EFT(瞬态脉冲干扰)、DIP(电压跌落)、CS(传导抗干扰)、RS(辐射抗干扰)、Surge(雷击)、PMS(磁场抗扰)。 通过这些测试项目我们不难看出EMC测试主要围绕产品的电磁干扰和敏感度两部分,如果一旦产品不符合安全认证标准需要EMC整改的时候我们可以通过降低其材料和零部件进行整改。 一、EMC整改意见: 1、在拿到整改意见书以后,需要提前定位好EMC整改计划。没有定位好计划就去盲目的整改产品就像无头的苍蝇一样到处乱动,这样只会增加整改的成本。 2、定位手段,对于这里小编觉得主要可以分为两点。第一:直觉判断

EMC理论基础知识——电磁屏蔽

本秂侑毒 提交于 2019-12-13 11:47:10
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 1、 屏蔽效能的概念 屏蔽是利用屏蔽体来阻挡或减小电磁能传输的一种技术,是抑制电磁干扰的重要手段之一。屏蔽有两个目的,一是限值内部辐射的电磁能量泄漏出该内部区域,二是防止外来的辐射干扰进入某一区域。 电磁场通过金属材料隔离时,电磁场的强度将明显降低,这种现象就是金属材料的屏蔽作用。我们可以用同一位置无屏蔽体时电磁场的强度与加屏蔽体之后电磁场的强度之比来表征金属材料的屏蔽作用,定义屏蔽效能(Shielding Effectiveness,简称 SE): 2、屏蔽体上孔缝的影响 实际上,屏蔽体上面不可避免地存在各种缝隙、开孔以及进出电缆等各种缺陷,这些缺陷将对屏蔽体的屏蔽效能有急剧的劣化作用。上节中分析的理想屏蔽体在 30MHz 以上的屏蔽效能已经足够高,远远超过工程实际的需要。真正决定实际屏蔽体的屏蔽效能的因素是各种电气不连续缺陷,包括:缝隙、开孔、电缆穿透等。屏蔽体上面的缝隙十分常见,特别是目前机柜、插箱均是采用拼装方式,其缝隙十分多,如果处理不妥,缝隙将急剧劣化屏蔽体的屏蔽效能。 3、孔缝屏蔽的总体设计思想 根据小孔耦合理论,决定孔缝泄漏量的因素主要有两个:孔缝面积和孔缝最大线度尺寸。两者皆大,则泄漏最为严重;面积小而最大线度尺寸大则电磁泄漏仍然较大。如图所示为一典型机柜示意图,上面的孔缝主要分为四类: (1

EMC测试不合格,应该这样整改

二次信任 提交于 2019-12-13 10:26:07
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> EMC主要是通过测试产品在电磁方面的干扰大小和抗干扰能力的综合评定,是产品在质量安全认证重要的指标之一。很多产品在做产品安全认证时都会遇到产品测试不合格的情况,尤其是在电磁兼容测试(即EMC测试)出错频率更是普遍。当产品一旦测试不合格,那么随之而来的肯定是EMC整改通知书。在EMC整改过程中很多管理人和技术人员并不太明白该从何处入手,今天我们就来分析EMC整改常遇到的问题和一些整改建议。 首先我们来从EMC测试项目构成说起,EMC主要包含两大项:EMI(干扰)和EMS(产品抗干扰和敏感度)。 当然这两大项中又包括许多小项目,EMI主要测试项:RE(产品辐射,发射)、CE(产品传导干扰)、Harmonic(谐波)、Ficker(闪烁)。EMS主要测试项:ESD(产品静电)、EFT(瞬态脉冲干扰)、DIP(电压跌落)、CS(传导抗干扰)、RS(辐射抗干扰)、Surge(雷击)、PMS(磁场抗扰)。 通过这些测试项目我们不难看出EMC测试主要围绕产品的电磁干扰和敏感度两部分,如果一旦产品不符合安全认证标准需要EMC整改的时候我们可以通过降低其材料和零部件进行整改。 一、EMC整改意见: 1、在拿到整改意见书以后,需要提前定位好EMC整改计划。没有定位好计划就去盲目的整改产品就像无头的苍蝇一样到处乱动

EMC电磁兼容测试项目简介

柔情痞子 提交于 2019-12-13 01:15:26
EMC电磁兼容测试项目简介 一般来说,电气,电力设备产品要做的EMC电磁兼容测试主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关抗扰度测试。 下面重点介绍一下产品在进行电磁兼容测试时,相对比较容易出现问题的项目: 1、静电放电抗扰度检测 静电放电分为接触放电和空气放电,静电是积累的高压,当接触到设备的金属外壳时会瞬间放电,会影响到电子设备的正常工作,可能引起设备故障或重启,在安全性要求较好的场合这是不允许的。 静电会影响显示效果,可能出现显示闪烁或黑屏,影响正常显示和操作。静电还可能引起CPU工作异常,程序死机或重启。 如果在产品详细设计阶段采用电磁兼容的相关设计,做静电试验不必过分担心,通过设计,对静电积累的电荷进行良好的泄放,不会影响系统的正常工作。 1、雷击浪涌抗扰度检测 雷击浪涌主要包含两个方面,一个是电源防雷,一个是信号防雷。 电源防雷主要是针对系统级而言的,系统级设计要按照三级防雷设计,总电源进入端设置电源防雷(如OBO公司的V20-C/3-PH385),可以对系统的电源进行一级防护,电源经过电源防雷后,进入隔离变压器,隔离变压器可以对电磁干扰信号进行较好的防护,抑制其对系统的影响

硬件开发者之路,EMC设计从电源,信号,布局,ESD等各方面要点

寵の児 提交于 2019-12-12 10:56:11
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 在电子电路系统设计中EMC对于很多新手来说都快成为“玄学”了,主要原因是说起来简单,处理起来难。 简单说起来就是内外部干扰,处理起来难常常就是一团乱麻找不到问题点。无论是普通电路系统还是高速电路系统,我们对于EMC的处理都很有必要,那么今天来分享一篇文章学习几个要点,实际上遵循这几个原则,可以大大减小EMC出现问题的概率。 一、电源系统处理 一个原则:要有源和阻抗的概念,源需要最大限度达到IC然后由地最快返回。 这是PDN系统的设计划分。 开关电源的设计要点就在于开关电流回路的处理,回路要小! 对于覆铜处理:避免RF部分通过耦合干扰数字GND噪声数字电路异常,注意辐射区的耦合干扰问题。 避免形成大的源环路,进行Plane层的桥接。 Plane层的覆铜注意在边缘留间隙,减小边缘效应的影响。 去耦电容就近放置,减小寄生电感,避免去耦失效。 注意交流路径和直流路径的区别在于耦合。 关于信号地和支架的接地处理,接地的目的是提供干扰的泄放路径,环路开口的目的是避免形成大环路天线,造成EMI干扰。 二、信号的考虑 高速信号的频谱如上图,我们的目的是把所有的能量都传输到接收端。 传输线的阻抗等效: 微带线的模型: 差分信号的耦合模型: 传输线的阻抗: 几种端接匹配: 三、布局 连线: