基于CNN的电影推荐系统
从深度学习卷积神经网络入手,基于 Github 的开源项目来完成 MovieLens 数据集的电影推荐系统。 什么是推荐系统呢? 什么是推荐系统呢?首先我们来看看几个常见的推荐场景。 如果你经常通过豆瓣电影评分来找电影,你会发现下图所示的推荐: 如果你喜欢购物,根据你的选择和购物行为,平台会给你推荐相似商品: 在互联网的很多场景下都可以看到推荐的影子。因为推荐可以帮助用户和商家满足不同的需求: 对用户而言:找到感兴趣的东西,帮助发现新鲜、有趣的事物。 对商家而言:提供个性化服务,提高信任度和粘性,增加营收。 常见的推荐系统主要包含两个方面的内容,基于用户的推荐系统(UserCF)和基于物品的推荐系统(ItemCF)。两者的区别在于,UserCF 给用户推荐那些和他有共同兴趣爱好的用户喜欢的商品,而 ItemCF 给用户推荐那些和他之前喜欢的商品类似的商品。这两种方式都会遭遇冷启动问题。 下面是 UserCF 和 ItemCF 的对比: CNN 是如何应用在文本处理上的? 提到卷积神经网络(CNN),相信大部分人首先想到的是图像分类,比如 MNIST 手写体识别,CAFRI10 图像分类。CNN 已经在图像识别方面取得了较大的成果,随着近几年的不断发展,在文本处理领域,基于文本挖掘的文本卷积神经网络被证明是有效的。 首先,来看看 CNN 是如何应用到 NLP 中的