代数

线性代数三部曲(一)·行列式

强颜欢笑 提交于 2020-04-06 07:06:46
Part1:从解方程组谈起 栗子 :试讨论以下方程的解. \[\begin{cases} a_{11}x_1+a_{12}x_2=b_1\qquad(1)\\ a_{21}x_1+a_{22}x_2=b_2\qquad(2) \end{cases} \] 解 :将 \((1)\) 乘以 \(a_{21}\) , \((2)\) 乘以 \(a_(11)\) 有 \[\begin{cases} a_{11}a_{21}x_1+a_{12}a_{21}x_2=a_{21}b_1\qquad(3)\\ a_{11}a_{21}x_1+a_{22}a_{11}x_2=a_{11}b_2\qquad(4) \end{cases} \] 消去 \(x_1\) 有 \[(a_{11}a_{22}-a_{12}a_{21})x_2=a_{11}b_2-a_{21}b_1 \] 即 \[x_2=\frac{a_{11}b_2-a_{21}b_1}{a_{11}a_{22}-a_{12}a_{21}} \] 重复对 \(x_2\) 消元,有 \[x_1=\frac{a_{22}b_1-a_{12}b_2}{a_{11}a_{22}-a_{12}a_{21}} \] 当 \(a_{11}a_{22}-a_{12}a_{21}\ne0\) 时,方程组有唯一解; 当 \(a_{11}a_{22}-a_{12

浅析逻辑代数、命题逻辑、一阶逻辑、高阶逻辑和数理逻辑

这一生的挚爱 提交于 2020-04-06 05:51:04
前言   此文是在本人学习完离散数学中的数理逻辑部分后,对标题中各部分之间的联系存在很大的疑惑。特此进行总结,水平有限,如有错误,欢迎指正。 从逻辑代数开始   逻辑代数是一种用于描述客观事物逻辑关系的数学方法,由英国科学家乔治·布尔 (George·Boole) 于19世纪中叶提出,因而又称 布尔代数 。   所谓逻辑代数,就是把逻辑推理过程代数化,即把逻辑推理过程符号化。 从逻辑代数到命题逻辑   同样的,命题逻辑是将那些具有真假意义的陈述句接着进行符号化,产生原子命题。与此同时,当我们把逻辑代数中的运算符:与( · )、或( + )、非( - ),替换成命题逻辑中的联结词集:合取( ∧ )、析取( ∨ )、非( ¬ )、蕴涵( → ) 和等价( ↔ ) 之后,我们就进入了命题逻辑的研究领域。   需要指出的是,通常也将命题逻辑称作命题演算,后者的出现就是用来讨论前者的,这里不再区分。它与下面出现的一阶逻辑(谓词逻辑)都是数理逻辑的子集(或称之为分支),是数理逻辑的两个最基本的也是最重要的组成部分。   有人可能会问,为什么不从数理逻辑开始,其实意义不大。要谈数理逻辑,不可避免的下一个主题就是逻辑代数。为什么这样说呢?因为数理逻辑一开始的诞生是没有意义的,它的创始人正是我们熟知的莱布尼茨(没错,就是高数中的那个牛顿-莱布尼茨公式)。莱布尼茨一开始是想要建立一套普遍的符号语言

【抽象代数】 08 - 域的扩张

风流意气都作罢 提交于 2020-03-23 12:10:58
1. 素域和单扩域 1.1 素域   域是一种比较“完整”的结构,它的限制条件比较多,结构自然也就不是很多样。现在我们来初步研究一下域的结构,研究的方法当然是从小域向大域扩展,若\(F\)是\(E\)的子域,\(E\)也叫\(F\)的 扩域 或 扩张 。扩张当然要从最简单的域开始,我们比较熟悉的简单域有哪些?最简单的无穷域是有理数域,它是最小的数域,任何数域都包含有理数域;最简单的有限域是整数在素数\(p\)下的剩余类域\(Z_p\)。这两种域都不再有真子域,我们把没有真子域的域称为 素域 ,一般记作\(\triangle\)。   那么除了这两种熟知的素域外,还有别的素域吗?每个域都含有单位元\(e\),由\(e\)生成的域就是所有的素域,而它又是某个生成环的商域,故我们可以从\(e\)的生成环\(Z'=\{ne\}\)讨论起。当\(\text{char}\triangle=\infty\)时,\(Z'\)与整数环\(Z\)同构,从而它们的商域同构,即\(\triangle\cong\Bbb{Q}\)。当\(\text{char}\triangle=p\)时,前面已经讨论过,这样的环\(Z'\)都同构于同余环\(Z_p\),进而有\(\triangle\cong Z_p\)。这样看来,同构意义的下的素域只有\(\Bbb{Q}\)和\(Z_p\),而且任何域都包含且仅包含一个素域。

关系代数

不羁岁月 提交于 2020-03-09 17:39:37
一般操作:假设问题的目标是选择出三个特定属性,而三个特定属性分别在三个表,则首先对其中两个表进行连接操作(具有相同属性的),再选择投影,然后用新的关系模型与第三个进行自然连接(注意要保留具有相同属性的中间量),然后选择投影。 1.除法:本质上是多个判断条件的选择语句。但商的关系模式是新的,度不同。 2.一般没有指定条件的均为自然连接。找相同属性的进行笛卡尔积。 来源: https://www.cnblogs.com/DDin/p/12449746.html

线性代数(四)置换,转置,向量空间

让人想犯罪 __ 提交于 2020-03-09 08:39:50
置换矩阵P 置换矩阵(permutations)P是行重新排列了的单位矩阵。对于n×n的矩阵来说一共有n!种行变换的形式。所有的置换矩阵均是可逆的。 在求矩阵的逆,解方程组Ax=b,这些情况下如果出现主元位置为0的时候,就需要使用行互换。 A=LU,其中L为下三角矩阵,U为上三角矩阵。 P-1 = PT ,PTP = I P矩阵的转置乘以本身等于单位矩阵。 转置矩阵 转置(transpose)记作T,一个3行2列的矩阵,他的转置矩阵为2行3列,且(AT)ij = Aji。 对称矩阵 对称矩阵(symmetric matrices),一个矩阵为对称矩阵意味着它经过转制之后该矩阵没有变化。AT=A。 一个矩阵乘以他的转置矩阵,得到的矩阵一定是对称矩阵。RTR is always symmetric。 但是为什么呢? 我们利用定义来证明(RTR)T = RTRTT = RTR,注意这里的矩阵的转置的转置是原矩阵。验证完毕。 向量空间 向量空间(Vector Spaces) 举个例子,R2称为一个平面有所有的2维向量组成的向量空间。为了防止在运算过程中超出向量空间的范围,向量空间必须对数乘和加法两种运算是封闭的或者说对线性组合封闭。R2的子空间必须是过原点的线段,也可以是它本身。第三种R2的子空间是零向量。 这里没听太明白。。。 来源: CSDN 作者: CZZ_CS 链接: https:

线性代数:矩阵的逆

倖福魔咒の 提交于 2020-03-07 22:17:45
关于矩阵的逆有很多性质和定理,例如,可逆矩阵一定是方阵、满秩矩阵、非奇异矩阵,可逆矩阵的行列式的值不为零等等。在证明一个矩阵是不可逆矩阵时,Strang教授讲了一种几何的思路: 矩阵不可逆的证明 根据可逆矩阵的定义,如果方阵 A ∗ B = I \mathbf{A} * \mathbf{B}=\mathbf{I} A ∗ B = I ,则 A \mathbf{A} A 和 B \mathbf{B} B 互称逆矩阵。下面是一个二维不可逆矩阵的例子,有矩阵 A = [ 1 2 2 4 ] \mathbf{A}=\begin{bmatrix}1&2\\2&4\end{bmatrix} A = [ 1 2 ​ 2 4 ​ ] ,如果 A \mathbf{A} A 可逆,则有 [ 1 2 2 4 ] ∗ B = [ 1 0 0 1 ] \begin{bmatrix}1&2\\2&4\end{bmatrix} * \mathbf{B}=\begin{bmatrix}1&0\\0&1\end{bmatrix} [ 1 2 ​ 2 4 ​ ] ∗ B = [ 1 0 ​ 0 1 ​ ] ,对矩阵 [ 1 2 2 4 ] \begin{bmatrix}1&2\\2&4\end{bmatrix} [ 1 2 ​ 2 4 ​ ] 中的两个列向量作某种线性组合会得到列向量 [ 1 0 ] \begin

3D数学 ---- 矩阵的更多知识(2)

坚强是说给别人听的谎言 提交于 2020-03-07 14:36:04
矩阵的逆 另外一种重要的矩阵运算是矩阵的求逆,这个运算只能用于方阵。 运算法则 方阵 M 的逆,记作 M-1 ,也是一个矩阵。当 M 与 M-1 相乘时,结果是单位矩阵。表示为公式9.6的形式: 并非所有的矩阵都有逆。一个明显的例子是若矩阵的某一行或列上的元素都为0,用任何矩阵乘以该矩阵,结果都是一个零矩阵。如果一个矩阵有逆矩阵,那么称它为可逆的或非奇异的。如果一个矩阵没有逆矩阵,则称它为不可逆的或奇异矩阵。奇异矩阵的行列式为0,非奇异矩阵的行列式不为0,所以检测行列式的值是判断矩阵是否可逆的有效方法。此外,对于任意可逆矩阵 M ,当且仅当 v = 0 时, vM = 0 。 M 的”标准伴随矩阵“记作”adj M “,定义为M的代数余子式矩阵的转置矩阵。下面是一个例子,考虑前面给出的3x3阶矩阵 M : 计算 M 的代数余子式矩阵: M 的标准伴随矩阵是代数余子式矩阵的转置: 一旦有了标准伴随矩阵,通过除以 M 的行列式,就能计算矩阵的逆。 其表示如公式9.7所示: 例如为了求得上面矩阵的逆,有: 当然还有其他方法可以用来计算矩阵的逆,比如高斯消元法。很多线性代数书都断定该方法更适合在计算机上实现,因为它所使用的代数运算较少,这种说法其实是不正确的。对于大矩阵或某些特殊矩阵来说,这也许是对的。然而,对于低阶矩阵,比如几何应用中常见的那些低阶矩阵,标准伴随矩阵可能更快一些

行列式及其应用

吃可爱长大的小学妹 提交于 2020-03-06 15:50:19
行列式 注意   本文参照 M I T MIT M I T 公开课, 可以看成是笔记。 什么是行列式   一个矩阵通常包括很多信息, 比如是否可逆等等。而对于每一个方阵, 都有一个数能够表示关于矩阵的很多信息, 这个数就叫做行列式。(本文从性质入手讲, 推导并不严谨, 不过这些性质都是经过严格证明了的)行列式也可以看做是从矩阵到实数的一个映射。要注意的是只有方阵才有行列式!!! 行列式的表示法   若 A A A 为方阵, 则其行列式可表示为: d e t ( A ) 或 ∣ A ∣ det(A)或\\ \left| A \right| d e t ( A ) 或 ∣ A ∣ 行列式的基本性质   行列式的基本性质有3条, 并且从这三条基本性质能够推出其他性质以及行列式的表达式。下面给出三条基本性质。    ① 单 位 矩 阵 的 行 列 式 为 1 ①单位矩阵的行列式为1 ① 单 位 矩 阵 的 行 列 式 为 1   对于这条性质没有过多的解释, 有点类似于定义, 将单位矩阵映射成为实数中的1, 也符合简便性。    ② 交 换 矩 阵 中 的 任 意 两 行 , 所 得 的 矩 阵 的 行 列 式 符 号 变 号 ②交换矩阵中的任意两行, 所得的矩阵的行列式符号变号 ② 交 换 矩 阵 中 的 任 意 两 行 , 所 得 的 矩 阵 的 行 列 式 符 号 变 号  

线性代数知识点总结

我只是一个虾纸丫 提交于 2020-03-04 23:26:12
直观理解线性代数的本质 如何理解矩阵特征值以及特征向量? 一篇很好的文章 A x = λ x Ax = \lambda x A x = λ x 可以把A看成是一个线性变换,那么这个定义可以看成对于向量x而言,在A的作用下保持方向不变(可能反向),进行大小为 λ \lambda λ 的缩放。 特征向量所在的直线包含了所有特征向量. 矩阵乘以特征向量可以看成是矩阵在每个特征向量方向上的投影。通过求特征值和特征向量把矩阵数据投影在一个正交的空间,而且在各个方向的投影大小就是特征值。 最大特征值并不是说数据在所有方向的投影的最大值,而仅限于正交空间的某一方向。最大特征值的特征向量所对应的方向就是速度最大的方向。 其实是一种数据的处理方法,可以简化数据。 特征值特征向量的重要例子 :数据挖掘中PCA(主成分分析)用于数据降维 详情点击 什么是相似矩阵?有什么用? ![{%asset_img 2.png%}](https://img-blog.csdnimg.cn/202003041016572.png) 线性变换 例如: y ⃗ = A x ⃗ \vec{y} = A\vec{x} y ​ = A x (类似于一次函数 y = x) 线性变换通过指定基下的矩阵A来表示 同一个线性变换,不同基下的矩阵称为相似矩阵.(任意向量在不同的基中有不同的表示)

【“关系代数”作业】注意事项

我的梦境 提交于 2020-03-04 20:12:38
部分同学已经写完作业了,速度很快,强烈表扬一下 ^_^ 同时发现了一些问题,建议改进提高。 1. 不会用数学公式编辑 这样的效果显然是不太好,严格的说,是错误的。 正确的编辑方法: 使用“Markdown编辑器”编辑“关系代数” 例子: 2. 部分同学采用了在纸上写,拍照的方法 这种方法值得推荐,将来考试还是要在纸质试卷上写的~ 写的时候注意规范。特别是条件,要注意写在右下角,个头要小一些。 下面这个同学的作业,除了连接符号,其他部分比较标准。 下面这个则不太标准: 一方面是选择符号 有点 像6,另一方面是条件个头太大,不在右下角。 建议大家用两种方法都做一下。 来源: CSDN 作者: HBU_David 链接: https://blog.csdn.net/qq_38975453/article/details/104651400