这一招将 Numpy 加速 700 倍!!!
作为 Python 语言的一个扩展程序库,Numpy 支持大量的维度数组与矩阵运算,为 Python 社区带来了很多帮助。 借助于 Numpy,数据科学家、机器学习实践者和统计学家能够以一种简单高效的方式处理大量的矩阵数据。 那么 Numpy 速度还能提升吗? 本文介绍了如何利用 CuPy 库来加速 Numpy 运算速度。 就其自身来说,Numpy 的速度已经较 Python 有了很大的提升。 当你发现 Python 代码运行较慢,尤其出现大量的 for-loops 循环时,通常可以将数据处理移入 Numpy 并实现其向量化最高速度处理。 但有一点,上述 Numpy 加速只是在 CPU 上实现的。 由于消费级 CPU 通常只有 8 个核心或更少,所以并行处理数量以及可以实现的加速是有限的。 这就催生了新的加速工具——CuPy 库。 何为 CuPy? CuPy 是一个借助 CUDA GPU 库在英伟达 GPU 上实现 Numpy 数组的库。 基于 Numpy 数组的实现,GPU 自身具有的多个 CUDA 核心可以促成更好的并行加速。 CuPy 接口是 Numpy 的一个镜像,并且在大多情况下,它可以直接替换 Numpy 使用。 只要用兼容的 CuPy 代码替换 Numpy 代码,用户就可以实现 GPU 加速。 CuPy 支持 Numpy 的大多数数组运算,包括索引、广播