How to use Coq arithmetic solver tactics with SSReflect arithmetic statements
问题 Coq has some convenient tactics for automatically proving arithmetic lemmas, for instance lia : From Coq Require Import ssreflect ssrfun ssrbool. From mathcomp Require Import ssrnat. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Require Import Psatz. Lemma obv : forall (x y z: nat), (x < y)%coq_nat -> (y < z)%coq_nat -> (z < 3)%coq_nat -> (x < 3)%coq_nat. Proof. move => x y z xlty yltz zlt3. lia. Qed. The tactics do not directly support SSReflect-style