时间序列分析和预测 (转载)
一、时间序列及其分解 时间序列(time series)是同一现象在不同时间上的相继观察值排列而成的序列。根据观察时间的不同,时间序列中的时间可以是可以是年份、季度、月份或其他任何时间形式。 时间序列: (1)平稳序列(stationary series) 是基本上不存在趋势的序列,序列中的各观察值基本上在某个固定的水平上波动,在不同时间段波动程度不同,但不存在某种规律,随机波动 (2)非平稳序列(non-stationary series) 是包含趋势、季节性或周期性的序列,只含有其中一种成分,也可能是几种成分的组合。可分为:有趋势序列、有趋势和季节性序列、几种成分混合而成的复合型序列。 趋势(trend):时间序列在长时期内呈现出来的某种持续上升或持续下降的变动,也称长期趋势。时间序列中的趋势可以是线性和非线性。 季节性(seasonality):季节变动(seasonal fluctuation),是时间序列在一年内重复出现的周期波动。销售旺季,销售淡季,旅游旺季、旅游淡季,因季节不同而发生变化。季节,不仅指一年中的四季,其实是指任何一种周期性的变化。含有季节成分的序列可能含有趋势,也可能不含有趋势。 周期性(cyclicity):循环波动(cyclical fluctuation),是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式波动。周期性是由商业和经济活动引起的