Extract Image Segmentation Map from Tensorflow DeepLab v3 Demo

匿名 (未验证) 提交于 2019-12-03 01:18:02

问题:

I have set up the Google's DeepLab V3 Demo on my local system and it runs successfully after making some minor changes. It's as:

# -*- coding: utf-8 -*- # DeepLab Demo This demo will demostrate the steps to run deeplab semantic segmentation model on sample input images. """  import os from io import BytesIO import tarfile import tempfile from six.moves import urllib  from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np from PIL import Image  import tensorflow as tf   class DeepLabModel(object):   """Class to load deeplab model and run inference."""    INPUT_TENSOR_NAME = 'ImageTensor:0'   OUTPUT_TENSOR_NAME = 'SemanticPredictions:0'   INPUT_SIZE = 513   FROZEN_GRAPH_NAME = 'frozen_inference_graph'    def __init__(self, tarball_path):     """Creates and loads pretrained deeplab model."""     self.graph = tf.Graph()      graph_def = None     # Extract frozen graph from tar archive.     tar_file = tarfile.open(tarball_path)     for tar_info in tar_file.getmembers():       if self.FROZEN_GRAPH_NAME in os.path.basename(tar_info.name):         file_handle = tar_file.extractfile(tar_info)         graph_def = tf.GraphDef.FromString(file_handle.read())         break      tar_file.close()      if graph_def is None:       raise RuntimeError('Cannot find inference graph in tar archive.')      with self.graph.as_default():       tf.import_graph_def(graph_def, name='')      self.sess = tf.Session(graph=self.graph)    def run(self, image):     """Runs inference on a single image.      Args:       image: A PIL.Image object, raw input image.      Returns:       resized_image: RGB image resized from original input image.       seg_map: Segmentation map of `resized_image`.     """     width, height = image.size     resize_ratio = 1.0 * self.INPUT_SIZE / max(width, height)     target_size = (int(resize_ratio * width), int(resize_ratio * height))     resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS)     batch_seg_map = self.sess.run(         self.OUTPUT_TENSOR_NAME,         feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]})     seg_map = batch_seg_map[0]     return resized_image, seg_map   def create_pascal_label_colormap():   """Creates a label colormap used in PASCAL VOC segmentation benchmark.    Returns:     A Colormap for visualizing segmentation results.   """   colormap = np.zeros((256, 3), dtype=int)   ind = np.arange(256, dtype=int)    for shift in reversed(range(8)):     for channel in range(3):       colormap[:, channel] |= ((ind >> channel) & 1) << shift     ind >>= 3    return colormap   def label_to_color_image(label):   """Adds color defined by the dataset colormap to the label.    Args:     label: A 2D array with integer type, storing the segmentation label.    Returns:     result: A 2D array with floating type. The element of the array       is the color indexed by the corresponding element in the input label       to the PASCAL color map.    Raises:     ValueError: If label is not of rank 2 or its value is larger than color       map maximum entry.   """   if label.ndim != 2:     raise ValueError('Expect 2-D input label')    colormap = create_pascal_label_colormap()    if np.max(label) >= len(colormap):     raise ValueError('label value too large.')    return colormap[label]   def vis_segmentation(image, seg_map):   """Visualizes input image, segmentation map and overlay view."""   plt.figure(figsize=(15, 5))   grid_spec = gridspec.GridSpec(1, 4, width_ratios=[6, 6, 6, 1])    plt.subplot(grid_spec[0])   plt.imshow(image)   plt.axis('off')   plt.title('input image')    plt.subplot(grid_spec[1])   seg_image = label_to_color_image(seg_map).astype(np.uint8)   plt.imshow(seg_image)   plt.axis('off')   plt.title('segmentation map')    plt.subplot(grid_spec[2])   plt.imshow(image)   plt.imshow(seg_image, alpha=0.7)   plt.axis('off')   plt.title('segmentation overlay')    unique_labels = np.unique(seg_map)   ax = plt.subplot(grid_spec[3])   plt.imshow(       FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation='nearest')   ax.yaxis.tick_right()   plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])   plt.xticks([], [])   ax.tick_params(width=0.0)   plt.grid('off')   plt.show()   LABEL_NAMES = np.asarray([     'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',     'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',     'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tv' ])  FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)  # @title Select and download models {display-mode: "form"}  MODEL_NAME = 'mobilenetv2_coco_voctrainaug'  # @param ['mobilenetv2_coco_voctrainaug', 'mobilenetv2_coco_voctrainval', 'xception_coco_voctrainaug', 'xception_coco_voctrainval']  _DOWNLOAD_URL_PREFIX = 'http://download.tensorflow.org/models/' _MODEL_URLS = {     'mobilenetv2_coco_voctrainaug':         'deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz',     'mobilenetv2_coco_voctrainval':         'deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz',     'xception_coco_voctrainaug':         'deeplabv3_pascal_train_aug_2018_01_04.tar.gz',     'xception_coco_voctrainval':         'deeplabv3_pascal_trainval_2018_01_04.tar.gz', } _TARBALL_NAME = 'deeplab_model.tar.gz'  model_dir = tempfile.mkdtemp() tf.gfile.MakeDirs(model_dir)  download_path = os.path.join(model_dir, _TARBALL_NAME) print('downloading model, this might take a while...') urllib.request.urlretrieve(_DOWNLOAD_URL_PREFIX + _MODEL_URLS[MODEL_NAME],                            download_path) print('download completed! loading DeepLab model...')  MODEL = DeepLabModel(download_path) print('model loaded successfully!')  # """## Run on sample images # # Select one of sample images (leave `IMAGE_URL` empty) or feed any internet image # url for inference. # # Note that we are using single scale inference in the demo for fast computation, # so the results may slightly differ from the visualizations in # [README](https://github.com/tensorflow/models/blob/master/research/deeplab/README.md), # which uses multi-scale and left-right flipped inputs. # """  # @title Run on sample images {display-mode: "form"}  SAMPLE_IMAGE = 'image1.jpg'  # @param ['image1', 'image2', 'image3'] IMAGE_URL = 'https://raw.githubusercontent.com/tensorflow/models/master/research/deeplab/g3doc/img/image1.jpg'  #@param {type:"string"}  _SAMPLE_URL = ('https://github.com/tensorflow/models/blob/master/research/'                'deeplab/g3doc/img/%s.jpg?raw=true')   def run_visualization(url):   """Inferences DeepLab model and visualizes result."""   try:     # f = urllib.request.urlopen(url)     # jpeg_str = f.read()     # original_im = Image.open(BytesIO(jpeg_str))     original_im = Image.open("human.jpg")   except IOError:     print('Cannot retrieve image. Please check url: ' + url)     return    print('running deeplab on image %s...' % url)   resized_im, seg_map = MODEL.run(original_im)    vis_segmentation(resized_im, seg_map)   image_url = SAMPLE_IMAGE run_visualization(SAMPLE_IMAGE) 

I have used various images with this model and it's working. Here's an example output:

Now I need to extract the mask as a separate image, how can I achieve that?

Thanks in advance!

回答1:

The seg_map hold the segmented image.

resized_im, seg_map = MODEL.run(original_im)

Its a matplot Image array. You can convert it into numpy array using np.array(seg_map) or use it whatever way you like.



标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!