在Tensorflow中,为解决设定学习率(learning rate)问题,提供了指数衰减法来解决。
通过tf.train.exponential_decay函数实现指数衰减学习率。
步骤:1.首先使用较大学习率(目的:为快速得到一个比较优的解);
代码实现:
decayed_learning_rate=learining_rate*decay_rate^(global_step/decay_steps)其中,decayed_learning_rate为每一轮优化时使用的学习率;
而tf.train.exponential_decay函数则可以通过staircase(默认值为False,当为True时,(global_step/decay_steps)则被转化为整数) ,选择不同的衰减方式。
global_step = tf.Variable(0) learning_rate = tf.train.exponential_decay(0.1, global_step, 100, 0.96, staircase=True) #生成学习率 learning_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(....., global_step=global_step) #使用指数衰减学习率
tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True/False)
import tensorflow as tf; import numpy as np; import matplotlib.pyplot as plt; learning_rate = 0.1 decay_rate = 0.96 global_steps = 1000 decay_steps = 100 global_ = tf.Variable(tf.constant(0)) c = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True) d = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=False) T_C = [] F_D = [] with tf.Session() as sess: for i in range(global_steps): T_c = sess.run(c,feed_dict={global_: i}) T_C.append(T_c) F_d = sess.run(d,feed_dict={global_: i}) F_D.append(F_d) plt.figure(1) plt.plot(range(global_steps), F_D, 'r-') plt.plot(range(global_steps), T_C, 'b-') plt.show()