ISP算法概述

匿名 (未验证) 提交于 2019-12-03 00:21:02

ISP算法概述

前言:

本篇blog主要为讲述ISP处理流程及其应用场景。


一、概述

依赖于 ISP 才能在不同的光学条件下都能较好的还原现场细节。

Cmos YUV sensor 的 ISP 处理流程如图 1 所示:



再送到数字信号处理芯片( DSP) 中加工处理。所以,从 sensor 端过来的图像是 Bayer 图像,经过黑电平补偿 ( black level compensation)、镜头矫正 ( lens shading correction)、坏像素矫正 ( bad pixel correction)、颜色插值 ( demosaic)、Bayer 噪声去除、 白平衡( awb) 矫正、 色彩矫正( color correction) 、 gamma 矫正、 色彩空间转换( RGB 转换为 YUV) 、 在 YUV 色彩空间上彩噪去除与边缘加强、 色彩与对比度加强,中间还要进行自动曝光控制等, 然后输出 YUV( 或者 RGB) 格式的数据, 再通过 I/O 接口传输到 CPU 中处理。

以下对各个模块的处理算法做简要概述。


图像在将实际的景物转换为图像数据时, 通常是将传感器分别接收红、 绿、 蓝三个分量的信息, 然后将红、 绿、 蓝三个分量的信息合成彩色图像。 该方案需要三块滤镜, 这样价格昂贵,且不好制造, 因为三块滤镜都必须保证每一个像素点都对齐。

通过在黑白 cmos 图像传感器的基础上, 增加彩色滤波结构和彩色信息处理模块就可以获得图像的彩色信息, 再对该彩色信息进行处理, 就可以获得色彩逼真的彩色图像。通常把彩色图像传感器表面覆盖的滤波称为彩色滤波阵列( Color Filter Arrays, CFA) 。

目前最常用的滤镜阵列是棋盘格式的, 已经有很多种类的, 其中绝大多数的摄像产品采用的是原色贝尔模板彩色滤波阵列( Bayer Pattern CFA) , 如图 2 所示, R、 G、 B 分别表示透红色、 透绿色和透蓝色的滤镜阵列单元, 图 3 比较形象地展示了此过程。由于人的视觉对绿色最为敏感, 所以在 Bayer CFA 中 G 分量是 R 和 B 的二倍, 在每个像素点上只能获取一种色彩分量的信息,然后根据该色彩分量的信息通过插值算法得到全色彩图像。


2.BLC(Black level Correction)

a.暗电流

物理器件不可能是理想的, 由于杂质、 受热等其他原因的影响, 即使没有光照射到象素,
象素单元也会产生电荷, 这些电荷产生了暗电流。 而且, 暗电流与光照产生的电荷很难进行
区分。

b.Black Level

Black Level 是用来定义图像数据为 0 时对应的信号电平。由于暗电流的影响, 传感器出来的实际原始数据并不是我们需要的黑平衡( 数据不为0) 。 所以,为减少暗电流对图像信号的影响,可以采用的有效的方法是从已获得的图像信号中减去参考暗电流信号。一般情况下, 在传感器中, 实际像素要比有效像素多, 如下图所示, 像素区头几行作为不感光区( 实际上, 这部分区域也做了 RGB 的 color filter) , 用于自动黑电平校正, 其平均值作为校正值, 然后在下面区域的像素都减去此矫正值, 那么就可以将黑电平矫正过来了。

下面所列图是做了矫正与没做矫正的对比, 很明显, 左边没做black level矫正的图片会比较亮, 影响图像的对比度:

3.LSC(Lens Shading Correction)

由于镜头本身的物理性质, 造成图像四周亮度相对中心亮度逐渐降低, 以及, 如下图所示, 由于图像光照在透过镜头照射到 pixel 上时, 边角处的焦点夹角大于中心焦点夹角, 造成边角失光。 表现在图像上的效果就是亮度从图像中心到四周逐渐衰减, 且离图像中心越远亮度越暗。 为了补偿四周的亮度, 需要进行 Lens Shading 的矫正。

矫正方法有二次项矫正、 四次项矫正。


4.BPC(Bad Pixel Correction)

a.坏点

坏点为全黑环境下输出图像中的白点, 高亮环境下输出图像中的黑点。

b.坏点修复方法

一般情况下, RGB 信号应与景物亮度呈线性响应关系, 但由于 Senor 部分 pixel 不良导致输出的信号不正常, 出现白点或黑点。


坏点修复方法通常有两种:

一种是自动检测坏点并自动修复, 另一种是建立坏点像素链表进行固定位置的坏像素点修复, 这种方式是 OTP 的方式。

c.坏像素矫正原理

下面以自动检测坏点修复方法为例, 阐述坏像素矫正算法原理。


5.颜色插值

BayerCFAColor Filter Arrays) 阵列之后, 单色光线打在传感器上, 每个像素都为单色光, 从而理想的图是一个较为昏暗的马赛克图。


6.Bayer Denoise

cmos sensor获取图像,光照程度和传感器问题是生成图像中大量噪声的主要因素。同时, 当信号经过时, 又会引入其他一些噪声。 这些噪声会使图像整体变得模糊, 而且丢失很多细节, 所以需要对图像进行去噪处理空间去噪传统的方法有均值滤波、 高斯滤波等。

但是, 一般的高斯滤波在进行采样时主要考虑了像素间的空间距离关系, 并没有考虑像素值之间的相似程度, 因此这样得到的模糊结果通常是整张图片一团模糊。 所以, 一般采用非线性去噪算法, 例如双边滤波器, 在采样时不仅考虑像素在空间距离上的关系, 同时加入了像素间的相似程度考虑, 因而可以保持原始图像的大体分块, 进而保持边缘。


7.AWB(Automatic White Balance)

白平衡的基本原理是在任意环境下, 把白色物体还原成白色物体, 也就是通过找到图像中的白块, 然后调整的比例, 如下关系:
R= R * R_Gain
G
= G * G_Gain
B
= B * B_Gain
R
= G= B

算法通常包括的步骤如下:

(1)色温统计: 根据图像统计出色温;

(2)计算通道增益: 计算出通道的增益;

(3)进行偏色的矫正: 根据给出的增益, 算出偏色图像的矫正。


8.Color Correction

由于人类眼睛可见光的频谱响应度和半导体传感器频谱响应度之间存在差别,还有透镜等的影响, 得到的值颜色会存在偏差, 因此必须对颜色进行校正, 通常的做法是通过一个的颜色变化矩阵来进行颜色矫正。


9.Gamma Correction

人眼对外界光源的感光值与输入光强不是呈线性关系的, 而是呈指数型关系的。 在低照度下, 人眼更容易分辨出亮度的变化, 随着照度的增加, 人眼不易分辨出亮度的变化。 而摄像机感光与输入光强呈线性关系, 为方便人眼辨识图像, 需要将摄像机采集的图像进行gamma 矫正。

Gamma 矫正是对输入图像灰度值进行的非线性操作, 使输出图像灰度值与输入图像灰度值呈指数关系:

Vout =AVin

横坐标是输入灰度值, 纵坐标是输出灰度值, 蓝色曲线是 gamma 值小于 1 时的输入输出关系, 红色曲线是 gamma 值大于 1 时的输入输出关系。 可以观察到, 当 gamma 值小于 1 时(蓝色曲线), 图像的整体亮度值得到提升, 同时低灰度处的对比度得到增加, 更利于分辩低灰度值时的图像细节。


10.
色彩空间转换

是一种基本色彩空间, 人眼对亮度改变的敏感性远比对色彩变化大很多, 因此, 对于人眼而言, 亮度分量要比色度分量U重要得多。 所以, 可以适当地抛弃部分UV分量, 达到压缩数据的目的。

算子

其实是经过缩放和偏移的改动版,表示亮度,Cr表示色彩的色差, 分别是红色和蓝色的分量。 在家族中,是在计算机系统中应用最多的成员, 其应用领域很广泛,JPEG均采用此格式。 一般人们所讲的大多是指YCbCrYCbCr有许多取样格式,。

444422411420

转换为的公式如下:

r 0.5 0.4178 0.0813 128

b 0.1678 0.33113 0.5 128

0.299 0.587 0.114

C R G B

C R G G

Y R G B

色彩空间转换这个模块, 是将YUV444, 然后在色彩空间上进行后续的彩色噪声去除、 边缘增强等, 也为后续输出转换为图片提供方便。


11.Color Denoise

为了抑制图像的彩色噪声, 一般采用低通滤波器进行处理。 例如使用M×N的高斯低通滤波器在色度通道上进行处理。


文章来源: ISP算法概述
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!