batchsize过小:每次计算的梯度不稳定,引起训练的震荡比较大,很难收敛。
batchsize过大:
(1)提高了内存利用率,大矩阵乘法并行计算效率提高。
(2)计算的梯度方向比较准,引起的训练的震荡比较小。
(3)跑完一次epoch所需要的迭代次数变小,相同数据量的数据处理速度加快。
缺点:容易内容溢出,想要达到相同精度,epoch会越来越大,容易陷入局部最优,泛化性能差。
batchsize设置:通常10到100,一般设置为2的n次方。
原因:计算机的gpu和cpu的memory都是2进制方式存储的,设置2的n次方可以加快计算速度。
来源:博客园
作者:乐呵的太阳
链接:https://www.cnblogs.com/happytaiyang/p/11617551.html