图像增强之普通平滑、高斯平滑、laplacian、sobelprewitt锐化

匿名 (未验证) 提交于 2019-12-02 23:45:01

1、简单平滑-邻域平均法

图像简单平滑是指通过邻域简单平均对图像进行平滑处理的方法,用这种方法在一定程度上消除原始图像中的噪声、降低原始图像对比度的作用。 它利用卷积运算对图像邻域的像素灰度进行平均,从而达到减小图像中噪声的影响、降低图像对比度的目的。

2、高斯平滑

高斯平滑也是邻域平均的思想对图像进行平滑的一种方法,高斯平滑与简单平滑不同,在高斯平滑中,不同位置的像素被赋予了不同的权重。下图的所示的3*3和5*5领域的高斯模板。

模板越靠近邻域中心位置,其权值越高。在图像细节进行模糊时,可以更多的保留图像总体的灰度分布特征。下图是常用的四个模板:

3、中值滤波

在使用邻域平均法去噪的同时也使得边界变得模糊。而中值滤波是非线性的图像处理方法,在去噪的同时可以兼顾到边界信息的保留。

选一个含有奇数点的窗口W,将这个窗口在图像上扫描,把窗口中所含的像素点按灰度级的升或降序排列,取位于中间的灰度值来代替该点的灰度值。

常用的窗口还有方形、十字形、圆形和环形。不同形状的窗口产生不同的滤波效果,方形和圆形窗口适合外轮廓线较长的物体图像,而十字形窗口对有尖顶角状的图像效果好。

4、边界保持类滤波




均值替换掉原来的值

中值灰度来替代,上图中2,3,3中选择3即可。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!