图像平滑

Wellner 自适应阈值二值化算法

会有一股神秘感。 提交于 2020-03-04 19:16:11
参考文档: Adaptive Thresholding for the DigitalDesk.pdf       Adaptive Thresholding Using the Integral Image.pdf 一、问题的由来 一个现实: 当用照像机拍摄一副黑纸白字的纸张时,照相机获得的图像并不是真正的黑白图像。不管从什么角度拍摄,这幅图像实际上是灰度或者彩色的。除非仔细的设置灯光,否则照相机所拍摄的放在桌子上的纸张图像并不能代表原始效果。不像在扫描仪或打印机内部,想控制好桌子表面的光源是非常困难的。这个开放的空间可能会受到台灯、吊灯、窗户、移动的影子等影响。人类的视觉系统能自动补偿这些,但是机器没有考虑到这些因素因此拍出的效果会很差。 这个问题在处理那种高对比度的艺术线条或文字时尤为突出,因为这些东西都是真正的黑色或白色。而摄像头会产生一副具有不同等级的灰度图像。许多应用都必须清楚的知道图像的那一部分是纯黑或纯白,以便将文字传递给OCR软件去识别。这些系统无法使用灰度图像(典型的是8位每像素),因此必须将他们转换为黑白图像。这有很多种方式去实现。在某些情况下,如果这些图像最终是给人看的,这些图像会使用一些抖动技术,以便使他们看起来更像灰度图像。但是对于机器处理的过程,比如文字识别,选择复制操作,或多个图像合成,系统就不可以使用抖动的图像。系统仅仅需要简单的线条

图像的平滑处理

假装没事ソ 提交于 2020-03-03 01:41:59
一、图像的平滑处理 基本概念 图像在获取、传输的过程中,可能会受到干扰的影响,会产生噪声,噪声是一种出错了的信号,噪声会造成图像粗糙,需要我们对图像进行平滑处理。图像去噪是一种信号滤波的方法,目的就是为了保留有用的信号。 噪声的基本特点 就是灰度值不相关、空间位置都是随机的 平滑的目的 1. 模糊:在提取大目标之前,去除太小的细节。将目标内的小间断点连接起来 2.消除噪声:改善图像质量,降低干扰。 平滑滤波对图像的低频分量增强,同时会消弱高频分量。用于消除图像中的随机噪声,起到平滑作用 基本方法 本节的方法主要是运用在 空间域 内,所谓空间域就是指直接在像素坐标处对其值进行操作。相应的,还有 频域法 ,所谓频域法就是通过 傅里叶变换 、 拉普拉斯变化 ,将图像数据映射到频域里,然后滤除噪声的频率,再把数据映射回空间域。 空间滤波增强技术,都是基于 模板 进行的,模板也叫做 滤波器 、 掩膜 , 窗口 。用某一 模板 对每个 像元 与其周围邻域的所有像元进行某种数学运算,得到该像元新的灰度值。新的灰度值不仅与该像元的灰度值有关,还与其邻域内的像元的灰度值有关。 实际上,模板的大小是可以人为确定的,可以3 * 3,也可以5 * 5。但一定是要是奇数,各种系数也可以通过我们的需要来确定。 图像平滑,有以下三种基本方法 1.线性平滑:每一个像素的灰度值用它的邻域值代替,邻域为NXN

OpenCV-Python教程9-平滑图像

て烟熏妆下的殇ゞ 提交于 2020-02-11 07:14:21
Canny边缘检测方法被誉为边缘检测的最优方法。 import cv2 import numpy as np img = cv2.imread('handwriting.jpg', 0) edges = cv2.Canny(img, 30, 70) # canny边缘检测 cv2.imshow('canny', np.hstack((img, edges))) cv2.waitKey(0) cv2.Canny()进行边缘检测,参数2、参数3表示最低和最高阈值。 Canny边缘检测 具体步骤如下: 1. 使用5x5高斯滤波消除噪声: 边缘检测本身属于锐化操作,对噪声比较敏感,所以需要进行平滑处理。高斯滤波的具体内容参考前篇: OpenCV-Python教程9-平滑图像 2. 计算图像梯度的方向: 首先使用Sobel算子计算两个方向上的梯度Gx和Gy,然后算出梯度的方向: 保留这四个方向上的梯度:0°、45°、90°、135° 3. 取局部最大值: 在四个角度方向上取局部最大值 4. 滞后阈值 经过前面三步,剩下0和可能的边缘梯度值。通过设定两个阈值来筛选阈值: 像素点的值大于最高阈值,那肯定是边缘(上图A) 像素值小于最低阈值,那肯定不是边缘 像素值介于两者之间,如果高于最高阈值的点连接,也算边缘。所以C算,B不算 Canny推荐的高低阈值比在 2 : 1 到 3 : 1 之间

图像增强之空间域滤波

て烟熏妆下的殇ゞ 提交于 2020-02-06 00:09:01
1 、为什么进行图像增强 图像增强是指增强图像中某些特征,同时削弱或去除某些不需要的信息,即为了某种应用而去改善图像的质量,消除噪声,显现那些被模糊了的细节或简单的突出一副图像中感兴趣的特征。所以图像增强并不是增强图像的原始信息,而是只针对某一特征以提高某种信息的辨别能力,图像增强需要根据需求采用特定的方法,当增强一些信息时另外一些信息必定被损失,不存在一种通用的方法,必须根据需求决定保留哪些信息丢弃哪些信息。 图像增强技术基本上可以分为两类:空间域增强、频域增强。 2 、空间域滤波理论 2.1定义 空间域滤波就是在图像平面上对像素进行操作。 空间域滤波大体分为两类:平滑、锐化。 平滑滤波:模糊处理,用于减小噪声,实际上是低通滤波,典型的滤波器是高斯滤波。 锐化滤波:提取边缘突出边缘及细节、弥补平滑滤波造成的边缘模糊。实际上是高通滤波。 空间域处理可由下式表示: g(x,y)=T[f(x,y)] 式中,f(x,y)是输入图像,g(x,y)是处理后的图像,T是在点(x,y)的邻域上定义的关于f的一种算子,算子可应用于单幅图像或图像集合。 2.2空间域滤波和邻域处理 1)空间滤波器由一个邻域(通常是一个较小的矩形)和对该邻域所包围图像像素执行的预定义操作组成。对预定义的点(x,y)为中心的领域内的像素进行计算。 2)滤波产生一个新像素,新像素的坐标等于邻域中心的坐标(x,y)

图像的空域滤波增强

你离开我真会死。 提交于 2020-01-26 03:45:56
文章目录 1.噪声与imnoise函数 2.平滑滤波器 3.中值滤波器 4.自适应滤波器 5.锐化滤波器 使用空域模板进行的图像处理,称为图像的空域滤波增强,模板本身称为空域滤波器。空域滤波增强的机理就是在待处理的图像中逐点的移动模板,滤波器在该点的响应通过事先定义的滤波器系数和滤波模板扫过区域的相应像素值的关系来计算。 空域滤波器可以分为平滑滤波器、中值滤波器、自适应除噪滤波器和锐化滤波器。 1.噪声与imnoise函数 图像噪声按照其干扰源可以分为内部噪声和外部噪声。外部噪声,既指系统外部干扰以电磁波或经电源串进系统内部而引起的噪声,如电气设备、天体放电现象等引起的噪声。内部噪声,一般可分为以下4种: (1)由光和电的基本性质所引起的噪声 (2)电器的机械运动产生的噪声 (3)器件材料本身引起的噪声 (4)系统内部设备电路所引起的噪声 按噪声与信号的关系分类,可以将噪声分为加性噪声和乘性噪声两大类。设f(x,y)为信号,n(x,y)为噪声,噪声影响信号后的输出为g(x,y)。表示加性噪声的公式如下: 加性噪声和图像信号强度是不相关的,如运算放大器。图像在传输过程中引进的“信道噪声”,电视摄像机扫描图像的噪声,这类带有噪声的图像g(x,y)可看成理想无噪声图像f(x,y)与噪声n(x,y)之和。形成的波形是噪声和信号的叠加,其特点是n(x,y)和信号无关。如一般的电子线性放大器

Opencv之图像降噪(平滑)

拜拜、爱过 提交于 2020-01-18 13:57:37
图像降噪(平滑) 介绍 图像降噪的英文名称是Image Denoising, 是图像处理中的专业术语。现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。减少数字图像中噪声的过程称为图像降噪,有时候又称为图像去噪。 代码实现 首先,导入带噪音的图片。 img = cv2 . imread ( 'lenaNoise.png' ) img = cv2 . cvtColor ( img , cv2 . COLOR_BGR2RGB ) # 均值滤波 # 用3*3的核对图片进行卷积操作,核上的参数都是1/9,达到均值的效果 blur = cv2 . blur ( img , ( 3 , 3 ) ) # 方框滤波(归一化)=均值滤波 box1 = cv2 . boxFilter ( img , - 1 , ( 3 , 3 ) , normalize = True ) # 方框滤波(不归一化) box2 = cv2 . boxFilter ( img , - 1 , ( 3 , 3 ) , normalize = False ) # 高斯滤波 # 用5*5的核进行卷积操作,但核上离中心像素近的参数大。 guassian = cv2 . GaussianBlur ( img , ( 5 , 5 ) , 1 ) # 中值滤波 # 将某像素点周围5

图像处理___高斯滤波与高斯噪声

大憨熊 提交于 2019-12-26 09:02:42
噪声 1.噪声表现形式 噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。 2.噪声对数字图像的影响 对于数字图像信号,噪声表为或大或小的极值,这些极值通过加减作用于图像像素的真实灰度值上,对图像造成亮、暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图像识别等后继工作的进行。 3.高斯噪声 噪声可以看作随机信号,具有统计学上的特征属性。功率谱密度(功率的频谱分布PDF)即是噪声的特征之一,通过功率谱密度分类噪声。 高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。 高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。 概率密度函数PDF:    其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方σ2称为z的方差。 产生原因:1)图像传感器在拍摄时市场不够明亮、亮度不够均匀;      2)电路各元器件自身噪声和相互影响;     3)图像传感器长期工作,温度过高 4.表现形式 5.图像 高斯滤波器 1.定义 高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似

图像滤波之高斯滤波介绍

孤街浪徒 提交于 2019-12-26 09:02:30
1 高斯滤波简介   了解高斯滤波之前,我们首先熟悉一下高斯噪声。高斯噪声是指它的 概率密度函数 服从 高斯分布 (即 正态分布 )的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的 功率谱密度 又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为 常数 ,是指先后信号在时间上的相关性, 高斯白噪声 包括 热噪声 和 散粒噪声 。   高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为:                          g(x)=exp( -x^2/(2 sigma^2)   其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器,高斯函数的图形:                    2 高斯滤波函数   对于图像来说,高斯滤波器是利用高斯核的一个2维的卷积算子,用于图像模糊化(去除细节和噪声)。   1) 高斯分布   一维高斯分布:          二维高斯分布:      2) 高斯核   理论上,高斯分布在所有定义域上都有非负值,这就需要一个无限大的卷积核。实际上,仅需要取均值周围3倍标准差内的值,以外部份直接去掉即可。 如下图为一个标准差为1.0的整数值高斯核。                

高斯滤波

ぃ、小莉子 提交于 2019-12-26 09:02:08
1.通俗讲,对整幅图像进行加权平均的过程。 2.十分有效的低通滤波器。 3.两种实现:1.离散化窗口滑窗卷积;2.傅里叶变换。 4.高斯函数:    (e:自然对数,≈2.71828) 5.高斯函数积分:    6.高斯分布:    7.高斯滤波性质(5个):    ( 1 )二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.   ( 2 )高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.   ( 3 )高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染 ( 噪声和细纹理 ) .而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.   ( 4 )高斯滤波器宽度 ( 决定着平滑程度 ) 是由参数σ表征的

OpenCV--Python 图像平滑之中值平滑

早过忘川 提交于 2019-12-12 12:14:02
中值平滑 原理详解   中值平滑,类似于卷积,也是一种邻域运算,但计算的不是加权求和,而是对邻域中的像素点按灰度值进行排序,然后选择该组中的中值作为输出的灰度值。   比如,取以图像的位置 (1,1)为中心的 3X3 的邻域,对邻域中的像素点灰度值按从大到小进行排序, [ 11 , 21 , 31 , 125 , 141 , 165 , 190 , 234 , 234 ] [11,21,31,125,141,165,190,234,234] [ 1 1 , 2 1 , 3 1 , 1 2 5 , 1 4 1 , 1 6 5 , 1 9 0 , 2 3 4 , 2 3 4 ] 可知,141是该组灰度值的中值,那么输出图像在位置(1,1)的值便为141,以此类推,得到输出图像的所有像素点的灰度值。对边界的处理可采用多种策略,而对边界进行镜像补充是较为理想的一种选择。   中值滤波最重要的能力是去除椒盐噪声。椒盐噪声是指在图像传输系统中由于解码误差等原因,导致图像中出现孤立的白点或者黑点。 Python实现   对于python实现的中值平滑,首先利用命令 n d a r r a y [ r 1 : r 2 + 1 , c 1 : c 2 + 1 ] \mathrm{ndarray}[r_1:r_2 + 1, c_1:c_2+1] n d a r r a y [ r 1 ​ : r 2