Redis是建立在TCP协议基础上的CS架构,客户端client对redis server采取请求响应的方式交互。
一般来说客户端从提交请求到得到服务器相应,需要传送两个tcp报文。
设想这样的一个场景,你要批量的执行一系列redis命令,例如执行100次get key,这时你要向redis请求100次+获取响应100次。如果能一次性将100个请求提交给redis server,执行完成之后批量的获取相应,只需要向redis请求1次,然后批量执行完命令,一次性结果,性能是不是会好很多呢?
答案是肯定的,节约的时间是客户端client和服务器redis server之间往返网络延迟的时间。这个时间可以用ping命令查看。
网络延迟高:批量执行,性能提升明显
网络延迟低(本机):批量执行,性能提升不明显
某些客户端(java和python)提供了一种叫做pipeline的编程模式用来解决批量提交请求的方式。
测试用例
# -*- coding:utf-8 -*-import redis
import time
from concurrent.futures import ProcessPoolExecutor
r = redis.Redis(host='10.93.84.53', port=6379, password='bigdata123')
def try_pipeline():
def without_pipeline():
def worker():
with ProcessPoolExecutor(max_workers=12) as pool:
结果分析
try_pipeline平均处理时间:0.04659
without_pipeline平均处理时间:0.16672
我们的批量里有5个操作,在处理时间维度上性能提升了4倍!
网络延迟大约是30ms,不使用批量的情况下,网络上的时间损耗就有0.15s(30ms*5)以上。而pipeline批量操作只进行一次网络往返,所以延迟只有0.03s。可以看到节省的时间基本都是网路延迟。
pipeline不仅仅用来批量的提交命令,还用来实现事务transation。
使用transaction与否不同之处在与创建pipeline实例的时候,transaction是否打开,默认是打开的。
文章来源: python redis pipline