如果能二秒内在脑袋里解出下面的问题,本文便结束了。
已知:
,其中。求:
,,。到这里,请耐心看完下面的公式推导,无需长久心里建设。
首先,反向传播的数学原理是“求导的链式法则” :
设和为的可导函数,则
。接下来介绍
- 矩阵、向量求导的维数相容原则
- 利用维数相容原则快速推导反向传播
- 编程实现前向传播、反向传播
- 卷积神经网络的反向传播
快速矩阵、向量求导
这一节展示如何使用链式法则、转置、组合等技巧来快速完成对矩阵、向量的求导
一个原则维数相容,实质是多元微分基本知识,没有在课本中找到下列内容,维数相容原则是我个人总结:
维数相容原则:通过前后换序、转置 使求导结果满足矩阵乘法且结果维数满足下式:
如果, ,那么。
利用维数相容原则解上例:
step1:把所有参数当做实数来求导,
,依据链式法则有
,,可以看出除了
,和的求导结果在维数上连矩阵乘法都不能满足。step2:根据step1的求导结果,依据维数相容原则做调整:前后换序、转置
依据维数相容原则
,但中、,自然得调整为;同理:
,但 中、,那么通过换序、转置我们可以得到维数相容的结果。对于矩阵、向量求导:
- “当做一维实数使用链式法则求导,然后做维数相容调整,使之符合矩阵乘法原则且维数相容”是快速准确的策略;
- “对单个元素求导、再整理成矩阵形式”这种方式整理是困难的、过程是缓慢的,结果是易出错的(不信你试试)。
如何证明经过维数相容原则调整后的结果是正确的呢?直觉!简单就是美...
快速反向传播
神经网络的反向传播求得“各层”参数
和的导数,使用梯度下降(一阶GD、SGD,二阶LBFGS、共轭梯度等)优化目标函数。接下来,展示不使用下标的记法(
, or)直接对和求导,反向传播是链式法则和维数相容原则的完美体现,对每一层参数的求导利用上一层的中间结果完成。这里的标号,参考UFLDL教程 - Ufldl
前向传播:
(公式1) (公式2) 为第层的中间结果,为第层的激活值,其中第层包含元素:输入,参数、,激活函数,中间结果,输出。
设神经网络的损失函数为
(这里不给出具体公式,可以是交叉熵、MSE等),根据链式法则有:这里记
,其中 、 可由 公式1 得出,加转置符号是根据维数相容原则作出的调整。如何求
? 可使用如下递推(需根据维数相容原则作出调整):其中
、 。那么我们可以从最顶层逐层往下,便可以递推求得每一层的
注意:
是逐维求导,在公式中是点乘的形式。反向传播整个流程如下:
1) 进行前向传播计算,利用前向传播公式,得到隐藏层和输出层 的激活值。
2) 对输出层(第
层),计算残差: (不同损失函数,结果不同,这里不给出具体形式)3) 对于
的隐藏层,计算:4) 计算各层参数
、偏导数:编程实现
大部分开源library(如:caffe,Kaldi/src/{nnet1,nnet2})的实现通常把
、作为一个layer,激活函数作为一个layer(如:sigmoid、relu、softplus、softmax)。反向传播时分清楚该层的输入、输出即能正确编程实现,如:
(公式1) (公式2)(1)式AffineTransform/FullConnected层,以下是伪代码:
注: out_diff =
是上一层(Softmax 或 Sigmoid/ReLU的 in_diff)已经求得: (公式 1-1) (公式 1-2) (公式 1-3)(2)式激活函数层(以Sigmoid为例)
注:out_diff =
是上一层AffineTransform的in_diff,已经求得,在实际编程实现时,in、out可能是矩阵(通常以一行存储一个输入向量,矩阵的行数就是batch_size),那么上面的C++代码就要做出变化(改变前后顺序、转置,把函数参数的Vector换成Matrix,此时Matrix out_diff 每一行就要存储对应一个Vector的diff,在update的时候要做这个batch的加和,这个加和可以通过矩阵相乘out_diff*input(适当的转置)得到。
如果熟悉SVD分解的过程,通过SVD逆过程就可以轻松理解这种通过乘积来做加和的技巧。
丢掉那些下标记法吧!
卷积层求导
卷积怎么求导呢?实际上卷积可以通过矩阵乘法来实现(是否旋转无所谓的,对称处理,caffe里面是不是有image2col),当然也可以使用FFT在频率域做加法。
那么既然通过矩阵乘法,维数相容原则仍然可以运用,CNN求导比DNN复杂一些,要做些累加的操作。具体怎么做还要看编程时选择怎样的策略、数据结构。
快速矩阵、向量求导之维数相容大法已成。