洛谷$P1390$ 公约数的和 莫比乌斯反演/欧拉函数

久未见 提交于 2019-11-30 15:47:58

正解:莫比乌斯反演/欧拉函数

解题报告:

传送门$QwQ$

首先显然十分套路地变下形是趴

$\begin{align*}&=\sum_{i=1}^n\sum_{j=1}^n gcd(i,j)\\&=\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^{min(i,j)} [gcd(i,j)==d]\cdot d\\&=\sum_{d=1}^{n}d\cdot \sum_{i=1}^n\sum_{j=1}^n [gcd(i,j)==d]\\\end{align*}$

这时候有两个选择,一个是莫反一个是欧拉函数

欧拉函数的话就很$easy$?直接戳我简要总结里常见套路第一条,就能$O(n)$做了$QwQ$

然后莫反就其实也挺套路的,,,直接套个板子上去,记得加个数论分块.$over$

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!