I would like to melt several groups of columns of a dataframe into multiple target columns. Similar to questions Python Pandas Melt Groups of Initial Columns Into Multiple Target Columns and pandas dataframe reshaping/stacking of multiple value variables into seperate columns. However I need to do this explicitly by column name, rather than by index location.
import pandas as pd
df = pd.DataFrame([('a','b','c',1,2,3,'aa','bb','cc'), ('d', 'e', 'f', 4, 5, 6, 'dd', 'ee', 'ff')],
columns=['a_1', 'a_2', 'a_3','b_1', 'b_2', 'b_3','c_1', 'c_2', 'c_3'])
df
Original Dataframe:
id a_1 a_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3
0 101 a b c 1 2 3 aa bb cc
1 102 d e f 4 5 6 dd ee ff
Target Dataframe
id a b c
0 101 a 1 aa
1 101 b 2 bb
2 101 c 3 cc
3 102 d 4 dd
4 102 e 5 ee
5 102 f 6 ff
Advice is much appreciated on an approach to this.
There is a more efficient way to do these type of problems that involve melting multiple different sets of columns. pd.wide_to_long
is built for these exact situations.
pd.wide_to_long(df, stubnames=['a', 'b', 'c'], i='id', j='dropme', sep='_')\
.reset_index()\
.drop('dropme', axis=1)\
.sort_values('id')
id a b c
0 101 a 1 aa
2 101 b 2 bb
4 101 c 3 cc
1 102 d 4 dd
3 102 e 5 ee
5 102 f 6 ff
You can convert the column names to multi index based on the columns pattern and then stack at a particular level depending on the result you need:
import pandas as pd
df.set_index('id', inplace=True)
df.columns = pd.MultiIndex.from_tuples(tuple(df.columns.str.split("_")))
df.stack(level = 1).reset_index(level = 1, drop = True).reset_index()
# id a b c
#101 a 1 aa
#101 b 2 bb
#101 c 3 cc
#102 d 4 dd
#102 e 5 ee
#102 f 6 ff
cols = df.columns.difference(['id'])
pd.lreshape(df, cols.groupby(cols.str.split('_').str[0])).sort_values('id')
Out:
id a c b
0 101 a aa 1
2 101 b bb 2
4 101 c cc 3
1 102 d dd 4
3 102 e ee 5
5 102 f ff 6
来源:https://stackoverflow.com/questions/38862832/pandas-melt-several-groups-of-columns-into-multiple-target-columns-by-name