R语言Wald检验 vs 似然比检验

时光毁灭记忆、已成空白 提交于 2019-11-30 00:50:13

 原文链接:http://tecdat.cn/?p=6895

 

在开展基于概率推理的课程时,关键主题之一是基于似然函数的检验和置信区间构建。通常包括Wald,似然比和分数检验。在这篇文章中,我将修改Wald和似然比检验的优缺点。我将重点关注置信区间而不是检验 。

 

示例


我们将X表示观察到的成功次数的随机变量,x表示其实现的值。似然函数只是二项式概率函数,但参数是模型参数。 所以MLE只是观察到的比例。

 

Wald置信区间 

 

如果我们使用将参数空间(在我们的示例中为区间(0,1))映射到整个实线的变换,那么我们保证在原始比例上获得仅包括允许参数值的置信区间。

 

 

对于概率参数绘制的n = 10,x = 1的二项式示例的对数似然函数:

从视觉上我们可以看出,对数似然函数在绘制时 实际上不是二次方。下图显示了相同的对数似然函数,但现在x轴是对数几率:

 

二项式的对数似然函数n = 10 x = 1检验,相对于对数几率。

 

似然比置信区间


虽然似然比方法具有明显的统计优势,但计算上Wald区间/测试更容易。在实践中,如果样本量不是太小,并且Wald间隔是以适当的比例构建的,它们通常是合理的。然而,在小样本中,似然比方法可能是优选的。

 

 如果您有任何疑问,请在下面发表评论。 

  

大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务

统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服

QQ:3025393450

 

​QQ交流群:186388004 

【服务场景】  

科研项目; 公司项目外包;线上线下一对一培训;数据爬虫采集;学术研究;报告撰写;市场调查。

【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询

欢迎选修我们的R语言数据分析挖掘必知必会课程!

 

  

大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务

统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服

QQ:3025393450

 

​QQ交流群:186388004 

【服务场景】  

科研项目; 公司项目外包;线上线下一对一培训;数据爬虫采集;学术研究;报告撰写;市场调查。

【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询

欢迎选修我们的R语言数据分析挖掘必知必会课程!

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!