Wide to long returns empty output - Python dataframe

可紊 提交于 2019-11-29 17:18:57

The issue is with your column names, the numbers used to convert from wide to long need to be at the end of your column names or you need to specify a suffix to groupby. I think the easiest solution is to create a function that accepts regex and the dataframe.

import pandas as pd
import re

def change_names(df, regex):
    # Select one of three column groups
    old_cols = df.filter(regex = regex).columns
    # Create list of new column names
    new_cols = []
    for col in old_cols:
        # Get the stubname of the original column
        stub = ''.join(re.split(r'\d', col))
        # Get the time point
        num = re.findall(r'\d+', col) # returns a list like ['1']
        # Make new column name
        new_col = stub + num[0]
        new_cols.append(new_col)

    # Create dictionary mapping old column names to new column names
    dd = {oc: nc for oc, nc in zip(old_cols, new_cols)}
    # Rename columns
    df.rename(columns = dd, inplace = True)

    return df


tdf = pd.DataFrame({'person_id' :[1,2,3],'h1date': ['12/31/2007','11/25/2009','10/06/2005'],'t1val': [2,4,6],'h2date': ['12/31/2017','11/25/2019','10/06/2015'],'t2val':[1,3,5],'h3date': ['12/31/2027','11/25/2029','10/06/2025'],'t3val':[7,9,11]})

# Change date columns
tdf = change_names(tdf, 'date$')
tdf = change_names(tdf, 'val$')

print(tdf)
    person_id      hdate1  tval1      hdate2  tval2      hdate3  tval3
0          1  12/31/2007      2  12/31/2017      1  12/31/2027      7
1          2  11/25/2009      4  11/25/2019      3  11/25/2029      9
2          3  10/06/2005      6  10/06/2015      5  10/06/2025     11
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!